S]] Embedded Micro Solutions V1.0

Taking Control of the File Based Write
Filter with the FBWF API Set

By Sean D. Liming and John R. Malin
SJJ Embedded Micro Solutions

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 1

S]] Embedded Micro Solutions V1.0

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved

No part of this guide may be copied, duplicated, reprinted, and stored in a retrieval system by any
means, mechanical or electronic, without the written permission of the copyright owner.

First Printing: October 2006
Published in the United States by

SJJ Embedded Micro Solutions, LLC.
11921 Tivoli Park Row #5
San Diego, CA 92128 USA

WWW.Sjjmicro.com

Attempts have been made to properly reference all copyrighted, registered, and trademarked
material. All copyrighted, registered, and trademarked material remains the property of the
respective owners.

The publisher, author, and reviewers make no warranty for the correctness or for the use of this
information, and assume no liability for direct or indirect damages of any kind arising from the
information contained herewith, technical interpretaton or technical explanations, for
typographical or printing errors, or for any subsequent changes in this article.

The publisher and author reserve the right to make changes in this publication without notice and
without incurring any liability.

Windows, .Net Embedded, and Visual Studio are registered trade mark of Microsoft Corporation.

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 2

S]] Embedded Micro Solutions V1.0

Table of Contents

1 INTRODUCING FBWF APIS 4
2 A HIGH LEVEL REVIEW OF FBWF 4
3 THE FBWF API SET 4
4 CREATING A CUSTOM COMMAND LINE APPLICATION 5

4.1 PART 1 PROJECT SETUP.....ccvtiitiiiie et ettt eaeeeateeteeeastenase st e sesssstssenssesasesentesassansssenssesnsessssssssssnsaeas 6

4.2 PART 2 WRITING THE CODE......oiiuiiiuiiietiiteieeieeieeeeeeteeeaeteatesstessssssassesssesssesensessssansssenssesssessssssssssnseeas 8
5 SUMMARY. 15

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 3

S]] Embedded Micro Solutions V1.0

1 Introducing FBWF APIs

The Enhanced Write Filter (EWF) offers the developer two ways to control the state of EWF:
EWFMGR.EXE utility and the EWF API set. The EWF API set was introduced after the release of
XPe SP1. In that time, there have been multiple third party control solution developed and a .NET
implementation that provide developers with different choices to control EWF.

The new File Based Write Filter (FBWF) offers the same solution set: a command line utility and a
FBWF API set designed for native C++ applications. The FBWFMGR.EXE command line utility is
discussed in the online help and in our article introducing FBWF. In this article, we will focus our
attention on using the FBWF API set. We will provide a sample application that demonstrates the
use of the different FBWF API functions.

Certainly, it is possible to shell out to the FBWFMGR. EXE command line utility to perform the
basic actions, but the FBWF APIs can be integrated into your custom application when you what
to provide more interactive control and data display for the user or administrator. Most important
you want to monitor

2 AHigh Level Review of FBWF

FBWF provides protection on a file level instead of the whole volume or partition like EWF. The
developer can set specific files or directories to be unprotected. Any writes made to protected
fles are sent to RAM overlay (cache). Any writes to unprotected (exclusion) files are passed
through to the disk.

FBWF working at a file level provides some features that EWF doesn’t provide, like the ability to
add or remove protected volumes, to allow file writes to pass through to the protected volume,
and to control the amount of RAM that FBWF will use. Here are the main features:

File and Directory Management Transparency
Selective Write-Through

Selective Commits and Restores

Dynamic Protection

Improved Overlay Memory Use

3 The FBWF API Set

The FBWF API set consists of a separate installable FBWFAPI.H and FBWFLIB.LIB. The
FBWFLIB.DLL is required for the custom FBWF API application to run, and the DLL is part of the
File Based Write Filter component.

The FBWF API function set is divided into 4 groups:

¢ Management of the System Wide Cache

e Manage a Specific Volume

e Manage Files and Directories in a Specific protect volume

e Control individual file commit or restore

Many of these functions when called will require a reboot to be performed. Some of the status
function provides information on the current state and what the state will be upon reboot. You can
cancel the next state during the current session. For example, if a call is made to
FbwfDisableFilter, but later in the session the desire is to keep FBWF enabled upon re-boot, the
FbwfEnableFilter can be called to keep the FBWF enabled, thus cancelling the FbwfDisableFilter
call.

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 4

S]] Embedded Micro Solutions V1.0

Function Description
FbwfEnableFilter Enables write filtering in the next session.
FbwfDisableFilter Disables write filtering for the next session.
FbwflsFilterEnabled Queries the filter state for the current and next session.
Sets the maximum amount of RAM the write cache may use.
FbwfSetCacheThreshold The values must be an integer value between 16 (16MB)

and 1024 (1024 MB).

Allows applications to be signaled when the remaining cache
memory falls below a specified size.

Causes the write filter to allocate the entire cache size at
start up instead of allocating memory as needed.

Turns off cache pre-allocation so that cache memory is
allocated only as needed.

Retrieves the state of the pre-allocation flag for the current
and next sessions.

Retrieves information about memory currently used by the

FbwfCacheThresholdNotification
FbwfEnableCachePreAllocation
FbwfDisableCachePreAllocation

FbwflsCachePreAllocationEnabled

FbwfGetMemoryUsage cache

FbwfEnableCompression Allows the write filter to compress the memory cache.
FbwfDisableCompression Disables cache compression.
FbwflsCompressionEnabled Retrieves the status of the compression flag.

Table 1 - FBWF functions used to manage the system-wide write cache.

Function Description
EbwfProtectVolume Enables write protection for a specified volume. This can be
used to add new volumes.

FbwfUnprotectVolume Removes write protection for the specified volume.
FowfGetVolumeList Retrieves the list of protected volumes.
FbwilsVolumeProtected Retrieves the protection status for a specified volume in both

the current and next sessions.
Retrieves information about the first file in the FBWF
memory cache.
FbwiEindNext Retrieves information about the next fie in the FBWF
memory cache.
FbwfFindClose Closes the FbwfFindFirst/FbwfFindNext search.
Table 2 - Manage the protection of a specific volume.

FbwfFindFirst

Function Description
FbwfAddExclusion Adds a file or directory to the exclusion list.
FbwfRemoveExclusion Removes a file or directory from the exclusion list.
FbwfGetExclusionList Retrieves the list of files and directories in the exclusion list.

Table 3 - Manage files and Directories excluded within a protected volume.

Function Description
FbwfCommitFile Writes the cached file overlay to the physical disk file.
FbwiRestoreFile Clealrs t.he pached view of the specified file, thus protect file
on disk is viewed
Table 4 - Functions used for file commit and restore.

4 Creating a Custom Command Line Application

The help files provide details of the detailed information about each function, the syntax, and any
results. Now lets see how we can put these functions into action. Using visual Studio 2005, we
will create a custom command line application that demonstrates who many of these functions
operate.

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 5

S]] Embedded Micro Solutions

V1.0

4.1 Part 1 Project Setup

1. Open Visual Studio .2005
2. From the Menu select File->New Project
3. The New Project dialog box appears, under Project Types select Visual C++ .
4. On the right under templates select Win32 Console Application.
5. Enter name FBWFCMD as show in Fig 1.
New Project EJ[E|
Project bypes: Templates: EI EI
[=)- Misual Basic || ¥isual Studio installed templates A
Windows |
Office ﬁ Cuskom izard ::EETest Praject
[+ Smart Device EEWindows Forms Application _ECLR Console Application
Database (ZAwin3z Cansale Application [ATL Project
Skarker Kits E"L,QIMFC Application _EMakefile Project
Tesk 2. A5P NET Web Service EF\TL Server Project
[wisual C# aij BTL Server Web Service EF\TL Smatt Device Projsct
&3] \ﬁ'i.su‘?l Ci+) f_ﬂclass Library [EJCLR Empty Project
D|str|butec.| System Solutions [EJEmpty Project ﬂ-‘g'lMFC Actives Contral
M One Bloe Ty I MFC DL 1#MFC Smart Device ActiveX Contral
B Test Projects SHMFC Smart Davice Application ol MFC Smart Device DLL
g"ﬂSQL Server Projeck EWinSZ Praoject
EWin32 Smart Device Project EWindows Farms Contral Library
_:Q_EWindows Service)
A project for creating a Win32 console applica.fion Il
Mame: | FEWECMD
Location: [FriPEYHPEFBMWE v
Solution Name: | FewBCMD Create directory For salution
[Ok l [Cancel]
Fig 1 Creating a New Project
6. Click OK.

7. Click on Finish in the Win32 Application Wizard.

8. Copy fbwfapi.h to the directory of the project so that it exists within the same directory

as the other project files.

9. In the Solutions Explorer, right click on Header Files, and select Add Existing ltem from

the pop-up context menu.

10. The Open Add Existing Item dialog box should open to the project directory. Highlight the

ewfapi.h file and click OPEN. Fig 2 shows the result.

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06

S]] Embedded Micro Solutions

Solution Explorer - Solution 'FEWFCMD' (1 project) » I X

j Solution 'FEWFCMD' (1 project)
£ 20 FBWFCMD
|LF Header Files
] Fhuifapi.h
1] stdafx.h
[Resource Files
= | Source Files
€+ FBWFCMD.cpp
Cﬂ stdafx.cpp
[Z] ReadMe.txt

Lji]SDIution Explorer Q}CIass Wit

Fig 2 Adding the FBWFAPI.H Resource

11. Now, make sure that FBWFCMD.cpp has focus. We need to add the FBWFLIB.LIB to

the project. From the menu, select Project.
12. Select FBWFCMD Properties from the submenu.

13. The properties dialog provides the ability to custom control the building of the application.

From the Configuration drop down, select All Configurations.

14. In the Configuration Properties tree on the left, expand Linker and select Input.

15. Select Additional Dependencies, and click on the box with three dots.

16. Type in the path and name to the fbwflib.lib, as shown in Fig 3, and click OK.

FBWFCMD Property Pages

Command Line
Manifest Tool
#ML Document Generatar
Browse Information
Build Events
Custom Build Step
Code Analysis
Wweb Deployment
Application Yerifier

Additional Dependencies

=]

Specifies additional items to add to the link line {ex: kernel32.lib); configuration specific.

[o

@

X

Configuration: |l IENCeTE | Blatform: | Active(Win3z) |
| @ Camman Properties | Additional Dependencies F:'\XPE" XPEFBWF" fbwflib.lib
[=)- Configuration Properties Ignore All Default Libraries Mo
General Ignore Specific Library
Debugging Madule Definition File
B O+ Add Module to Assembly
=) Linker Embed Managed Resource File
General Farce Symbol References
Ian!t : Delay Loaded DLLs
Manifest File :
: Assembly Link Resource
Debugging
Syskem
Optimization
Embedded IDL
Advanced

Fig 3 Adding FBWFLIB.LIB to the project

17. Click OK again to close the Properties dialog.

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06

S]] Embedded Micro Solutions V1.0

4.2 Part 2 Writing the Code

1. Enter the code below for the FBWFCMD.CPP file

// FBWFCMD.cpp : Defines the entry point for the console application.

// Copyright (c) 2006 SJJ Embedded Micro Solutions, LLC. All Rights Reserved

// Code is provided AS IS without any warranty

// Description: Command line application demonstrates how to implement

finclude
finclude
finclude
finclude
finclude

the FBWF APIs for several of the core functions.

"stdafx.h"
<stdio.h>
<stdlib.h>
<windows.h>
"fbwfapi.h"

void DisplayHelp () ;

int main(int argc, char *argv[])

{

WCHAR szDrive[20];
WCHAR szPath[128];
DWORD dwStatus;

ULONG IscsEnabled =
ULONG IsnsEnabled =

[
o o

CHAR *csResult;
CHAR *nsResult;
ULONG cacheThreshold = 64;

printf ("\nFBWFCMD - FBWF API Example\n");
printf ("Copyright (c) 2006 SJJ Embedded Micro Solutions LLC., All Rights
Reserved\n\n") ;

if ((argc >= 2)

// FbwfEnableFilter
//Enable FBWF

e R
if (strcmp(argv[l], "-enable")==0) {
if (!FbwfEnableFilter()) {
printf ("FBWF Enabled. "),
printf ("Reboot system for change to take effect\n");
}
else(
printf ("Enable Error");
}
}
e S
//FbwfDisableFilter
//Disable FBWF
e S
if (strcmp(argv[l], "-disable")==0) {
if (!FbwfDisableFilter ()) {
printf ("FBWF Disabled. ");
printf ("Reboot system for change to take effect\n");
}
else{

printf ("Disable Error");

}

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

11/01/06

S]] Embedded Micro Solutions

V1.0

11/01/06

//FowfIsFilterEnabled
//Check to see if FBWF is enabled

, nsResult);

e
if (strcmp(argv[l], "-fbwfstate")==0) {
if (!FbwfIsFilterEnabled (&IscsEnabled, &IsnsEnabled)) {
if (IscsEnabled) {
csResult = "ENABLED";
}
else(
csResult = "DISABLED";
}
if (IsnsEnabled) {
nsResult = "ENABLED";
}
else(
nsResult = "DISABLED";
}
printf ("FBWF is %s\n", csResult);
printf ("FBWF for the next session is %$s\n"
}
else(
printf ("State Error");
}
}
e ettt

//FbwfEnableCompression
//Enable FBWF Compression

(strcmp (argv[1l], "-enablecompression")==0) {
if (!FbwfEnableCompression()) {

}

else(

printf ("FBWF compression enabled. ");

printf ("Reboot system for change to take effect\n");

printf ("Enable Compression Error");

//FowfDisableCompression
//Disable FBWF Compression

(strcmp (argv([1l], "-disablecompression")==0) {
if (!FbwfDisableCompression()) {

}

else(

printf ("FBWF compression disabled. ");

printf ("Reboot system for change to take effect\n");

printf ("Disable Compression Error");

//FbwfEnableCachePreAllocation
//Enable FBWF Cache PreAllocation

(strcmp (argv([1l], "-enablecache")==0) ({
if (!FbwfEnableCachePreAllocation()) {

}

else(

printf ("FBWF Cache PreAllocation enabled.

")

printf ("Reboot system for change to take effect\n");

printf ("EnableCachePreAllocation Error");

//FbwfDisableCachePreAllocation
Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

S]] Embedded Micro Solutions

V1.0

",argv(2]);

"
’

argvl[2]);

//Disable FBWF Cache PreAllocation

[/ mm e
if (strcmp(argv[l], "-disablecache")==0) {
if (!FbwfDisableCachePreAllocation()) {
printf ("FBWF Cache PreAllocation disabled. ");
printf ("Reboot system for change to take effect\n");
}
else(
printf ("DisableCachePreAllocation Error");
}
}
/) mm e

//FbwfProtectVolume
//Add a volume to be protected by FBWF Cache

if (strcmp(argv[l], "-protectvolume")==0) {
mbstowcs (szDrive, argv([2], 10);

dwStatus=FbwfProtectVolume (szDrive) ;
if (!dwStatus) {

printf ("Volume %s will be protected in the next session.

printf ("Reboot system for change to take effect\n");

}

else(
printf ("Error %d \n", dwStatus);

printf ("FBWF must be enabled for the next session");

DisplayHelp();

//FbwfUnprotectVolume
//Remove a volume to be protected by FBWF Cache

mbstowcs (szDrive, argv([2], 10);

dwStatus=FbwfUnprotectVolume (szDrive, 0);
if (!dwStatus) {

printf ("Volume %s will be unprotected in the next session.

printf ("Reboot system for change to take effect\n");

}

else(
printf ("Error %d \n", dwStatus);

DisplayHelp();

//FowfIsCompressionEnabled
//Check to see if FBWF Compression is enabled

if (strcmp(argv[l], "-fbwfcompression")==0) {
if (!FowfIsCompressionEnabled (&IscsEnabled,
if (IscsEnabled) {

csResult = "ENABLED";
}
else{

csResult = "DISABLED";
}
if (IsnsEnabled) {

nsResult = "ENABLED";
}
else{

nsResult = "DISABLED";
}

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06

&IsnsEnabled

)) A

10

S]] Embedded Micro Solutions Vi

0

nsResult);

nsResult);

printf ("FBWF compresspon is %s\n", csResult);
printf ("FBWF compression for the next session is %s\n",

//FbwfIsCachePreAllocationEnabled
//Check to see if FBWF Cache PreAllocation is enabled

[/ mm e
if (strcmp(argv[l], "-fbwfprealloc")==0) {
if (!FbwfIsCachePreAllocationEnabled (&IscsEnabled, &IsnsEnabled)) {
if (IscsEnabled) {
csResult = "ENABLED";
}
else(
csResult = "DISABLED";
}
if (IsnsEnabled) {
nsResult = "ENABLED";
}
else(
nsResult = "DISABLED";
}
printf ("FBWF Cache PreAlloc is %$s\n", csResult);
printf ("FBWF Cache PreAlloc for the next session is %s\n",
}
else(
printf ("Cache PreAlloc Error");
}
}
ettt bt

//FbwfIsVolumeProtected
//Check if FBWF is portecting a specific volume

if (strcmp(argv[l], "-volumestatus")==0) {
mbstowcs (szDrive, argv([2], 10);
dwStatus=FbwfIsVolumeProtected (szDrive, &§IscsEnabled, &IsnsEnabled) ;

if (!dwStatus) {
if (IscsEnabled) {

csResult = "ENABLED";
}
else(

csResult = "DISABLED";
}
if (IsnsEnabled) {

nsResult = "ENABLED";
}
else(
nsResult = "DISABLED";
}
printf ("Volume %s protection is %$s\n", argv[2],csResult);
printf ("Volume %s protection for next session is %s\n",

argv[2],nsResult);

else(
printf ("Error %d \n", dwStatus);

DisplayHelp();

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

11/01/06

11

S]] Embedded Micro Solutions V1.0

//FbwfSetCacheThreshold
//Set the Cache threshold for FBWF

e
if (strcmp(argv[l], "-setcache")==0) {
cacheThreshold = atoi(argv[2]);
dwStatus=FbwfSetCacheThreshold (cacheThreshold) ;
if (!dwStatus) {
printf ("Cache Threshold set to %u\n ", cacheThreshold);
printf ("Reboot system for change to take effect\n");
}
else(
printf ("Error %d \n", dwStatus);
if (dwStatus = ERROR_INVALID PARAMETER) {
printf ("Error: Threshold must be between 16 to
1024\n") ;
}
DisplayHelp();
}
}
e bttt

// FbwfAddExclusion
// Add a file or path to the exclusion list

if (strcmp(argv[l], "-addex")==0) {

mbstowcs (szDrive, argv([2], 10);
mbstowcs (szPath, argv([3], 128);

dwStatus=FbwfAddExclusion (szDrive, szPath);
if (!dwStatus) {
printf ("%s on drive %$s is now excluded.\n
",argv([3],argv[2]);
printf ("Reboot system for change to take effect\n");
}
else(
printf ("Error %d \n", dwStatus);
DisplayHelp();

//FbwfRemoveExclusion
//Remove a file or path to the exclusion list

if (strcmp(argv[l], "-remex")==0) {

mbstowcs (szDrive, argv([2], 10);
mbstowcs (szPath, argv([3], 128);

dwStatus=FbwfRemoveExclusion (szDrive, szPath) ;
if (!dwStatus) {
printf ("%s on drive %$s is now removed from exclusion.\n
",argv[3],argv[2]);
printf ("Reboot system for change to take effect\n");
}
else(
printf ("Error %d \n", dwStatus);
DisplayHelp();

// FbwfCommitFile
// Commit a file in cache to the disk

if (strcmp(argv[l], "-commit")==0) {

mbstowcs (szDrive, argv([2], 10);
Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 12

S]] Embedded Micro Solutions V1.0

mbstowcs (szPath, argv([3], 128);

dwStatus=FbwfCommitFile (szDrive, szPath);
if (!dwStatus) {
printf ("%s on drive $s has been committed to the disk.\n
",argv[3],argv(2]);
}

else(
printf ("Error %d \n", dwStatus);
DisplayHelp();
}
}
e
//FbwfRestoreFile
//Restore a file in cache from the version on the disk
e
if (strcmp(argv[l], "-restore")==0) {

mbstowcs (szDrive, argv([2], 10);
mbstowcs (szPath, argv([3], 128);

dwStatus=FbwfRestoreFile (szDrive,szPath);
if (!dwStatus) {
printf ("$s on drive %s has been restored from the disk.\n
",argv[3],argv(2]);

else(
printf ("Error %d \n", dwStatus);
if (dwStatus = ERROR_ACCESS_DENIED) {
printf ("Error: File not in cache\n");
}
if (dwStatus = ERROR_FILE_ NOT_FOUND) {
printf ("Error: File not found\n");
}
}
}
A ettt bt b
// Display help
ettt bt b
if ((strcmp(argv[l], "-2")==0) || (strcmp(argv[l],"-help")==0)) {

DisplayHelp();

else

// If the parameter conditions fails display help
DisplayHelp();
return 1;

}

return 0;

}

void DisplayHelp ()
{
printf ("\nFBWFCMD <Option>\n");

printf ("-enable Enable FBWF\n");
printf ("-disable Disable FBWF\n");
printf ("-enablecompression Enable Compression\n");
printf ("-disablecompression Disable Compression\n");
printf ("-enablecache Enable Cache PreAllocate\n");
printf ("-disablecache Disable Cache PreAllocate \n");
printf ("-protectvolume <volume> Protect a new volume\n");
printf ("-unprotectvolume <volume> Unprotect a new volume\n");
printf ("-fbwfstate Gets the filter status\n");
printf ("-fbwfcompression Gets the compresstion status\n");
printf ("-fbwfprealloc Gets the Cache PreAllocation status\n");
printf ("-volumestatus <volume> Gets the volume status\n");
printf ("-setcache <cache size> cache size must be between 16 and 1024\n");

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06 13

S]] Embedded Micro Solutions V1.0

list\n"

list\n"

disk\n"

disk\n"

}

printf ("-addex <drive> <file or path>add a file or path to the exclusion

) i

printf ("-remex <drive> <file or path> remove a file or path to the exclusion

)

printf ("-commit <drive> <file or path> commits a file in cache to the

)i

printf ("-restore <drive> <file or path> restores a file in cache from the
)

Build the application.

Using Component Designer, create a component for the FBWFCMD.EXE application.
Place the new component in the Embedded Enabling Features category.

Import the new component into the database.

Finally, create an XPE configuration using Target Designer and be sure to include the
following components:

File Based Write Filter

.NET 2.0 Framework

Task Manager

CMD — Windows Command Processor
FAT

NTFS

Include the component created for the FBWFCMD application.

Make sure that you have imported the PMQ information for the target platform.

Using the Extra Files in the configuration, add a folder called FBWFTEST.

Modify the File Bases Write Filer settings so that it will protect the C: partition and that
FBWFTEST is in the exclusion list.

. Check dependencies, build the configuration, download to the targets first partition, and

boot to XP Embedded.

. Once the Explorer Shell appears, click on new task and type CMD in the edit box.
. Click OK.
. In the Command Window, use FBWFMGR to make sure that EWF was setup properly

during FBA.

. Now, test FBWFCMD to test the different functions. You may have to reboot the system

after some of the functions. Try disable and then check the state. Re-enable FBWF, thus
cancelling the disable call. Add \Windows to the exclusion list, and the run FBWFMGR to
see that \Windows will be part of the exclusion list in the next session. Edit the FBA log,
and commit the changed file to the disk.

C:\>FBWFCMD -disable

FBWFCMD - FBWF AP| Example
Copyright (c) 2006 SJJ Embedded Micro Solutions LLC., All Rights Reserved

FBWF Disabled. Reboot system for change to take effect

C:\>FBWFCMD -fbwfstate

FBWFCMD - FBWF AP| Example
Copyright (c) 2006 SJJ Embedded Micro Solutions LLC., All Rights Reserved

FBWEF is ENABLED
FBWF for the next session is DISABLED

C:\>FBWFCMD -enable

FBWFCMD - FBWF AP| Example

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.

11/01/06

14

S]] Embedded Micro Solutions

V1.0

Copyright (c) 2006 SJJ Embedded Micro Solutions LLC., All Rights Reserved

FBWF Enabled. Reboot system for change to take effect
C:\>FBWFCMD -—addex c: \windows

FBWFCMD - FBWF AP| Example
Copyright (c) 2006 SJJ Embedded Micro Solutions LLC., All Rights Reserved

\windows on drive c: is now excluded.
Reboot system for change to take effect

C:\>FBWFCMD —commit c: \windows\fba\fbalog.txt
FBWFCMD - FBWF API| Example

Copyright (c) 2006 SJJ Embedded Micro Solutions LLC., All Rights Reserved

\windows\fba\fbalog.txt on drive c: has been committed to the disk.

15. Reboot the target, the FBALOG.TXT file should contain the change.

5 Summary

FBWF adds a brand new solution to architecting an XP Embedded image with the ability to allow
selected files to write-through to the disk. Taking control of the Filter is an important part of the
OS image design to allow for updates and administrative setup. Controlling FBWF can be
performed via a pre-built command line utility or through the FBWF API. The FBWF API allows

you to add FBWF management function into your custom applications.

Copyright © 2006 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
11/01/06

15

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15

