AAinnabgoks:

What is new for POS for .NET 1.14

By Sean D. Liming & John R. Malin
Annabooks

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14

AAinnabgoks: VL3

Copyright © 2014 Annabooks, LLC, All Rights Reserved
No part of this guide may be copied, duplicated, reprinted, and stored in a retrieval system by any means,
mechanical or electronic, without the written permission of the copyright owner.
Published in the United States by
Annabooks, LLC
6432 Glendale Dr.
Yorba Linda, CA 92886 USA

www.annabooks.com

Attempts have been made to properly reference all copyrighted, registered, and trademarked material. All
copyrighted, registered, and trademarked material remains the property of the respective owners.

The publisher, author, and reviewers make no warranty for the correctness or for the use of this
information, and assume no liability for direct or indirect damages of any kind arising from the information
contained herewith, technical interpretation or technical explanations, for typographical or printing errors,
or for any subsequent changes in this article.

The publisher and author reserve the right to make changes in this publication without notice and without
incurring any liability.

Windows, .Net, and Visual Studio are registered trademarks of Microsoft Corporation.

All other company names and products herein may be trademarks of their respective owners.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 2

http://www.annabooks.com/

AAinnabgoks: VL3

Table of Contents

1 FINALLY!IPOS FOR INET L1ttt ettt ettt e e e s s e bbb e e e e s e s s s bbb be s e e e e s ssaraes 4
2 CREATING AN APPLICATION ..ottt e s s e e e s e s e s bbb e e e e s s e s bbb ra e e e e e s e 4
2.1 PART 1 — CREATE THE APPLICATION ..uvttiiieiiiiittittteeeseiittttttseessesasbssssasssssiasbasssssssssssbasssssesssssssrsssassssssssssssenss 4
2.2 PART 2: ADDING THE POS FOR .NET LIBRARIES AND CODEccciitiiiiitiie e itiee ettt setee e s srtee e srtae s s eraae e s enveas 5
2.3 [e R S TU TN D NN o =5 R 7
3 UPGRADE APPLICATIONS TO .NET FRAMEWORK 4. X ...ttt ettt svaee s 10
3.1 UPDATING A CH APPLICATION ...eeiiiteiteietteeesetteee e ettt e s sesaesessabesesaebtesssastesessbsesssasbesssassessssssasessssberessssesssssseens 10
3.2 UPDATING A VB.NET APPLICATION ...cittiiiiitiieeiitteeesiteeessbeesssettessssssessssbsessssstesssssesssssssssssssserssssssssssssens 12
4 32BIT VERSUS B4BIT SUPPORT ...ttt ettt ettt s s ate e e s st e s s e bt a s s s bb e e s s sabbe e s sabte e e s sabes 14
5 SERVICE OBJECTS AND MORE 32-BIT VERSUS 64-BIToooiiiitiiiieee ettt 15
51 INFORMATION ON CREATING SERVICE OBJECTS INPOS FOR .NET 1.14 ..ot 15
5.2 MANAGING SERVICE OBJECTS INPOS FOR .NET L.14 ..ottt 15
5.3 32-BIT VERSUS 64-BIT SERVICE OBJECT INVESTIGATION ..uvviiiiiiiiiiiiiiiiieessiiittiieseessssissssessessssssssssssssessssssnnns 16

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 3

AAinnabgoks: VL3

1 Finally! POS for .NET 1.14

The long overdue update to POS for .NET SDK has finally arrived. POS for .NET v1.14 release was a
surprise since Microsoft never announced that they were working on an update. Unfortunately, the beta
cycle was very short giving very little time to do significant testing, but the SDK delivers the basic
elements that developers have been asking for:

e Support for .NET Framework 4.x and 64-bit applications. The .NET Framework 2.0 requirement is
no longer needed.

e Installation consistent with POS for .NET 1.12. The SDK location doesn’t change.

e Aligned with UnifiedPOS v1.14.

e Builds on the OPOS service object support with 8 new devices.

Best of all, the development process has not changed. The development processes discussed in the
book, Professional's Guide to POS for .NET, are still the same. This paper services as an addendum to
the book to cover POS for .NET v1.14 SDK.

2 Creating an Application

Although the process to create an application using the new SDK is the same, you need to use Visual
Studio 2012 or higher. Visual Studio 2013 will be used here to create a simple application that uses an
MSR (Magnetic Strip Reader). A Magtek MSR will be the MSR POS device. The MagTek’s POS for .NET
1.12 service object will be used for testing the application. In the future, the 1.14 service object should be
used for a real product when available, but until then MagTek’s 1.12 version will have to do. The first
steps are to make sure that the Service Objects or OPOS drivers are installed and successfully work with
the SDK’s TestApp.exe. Once the Service Object or OPOS driver is in place, you can create the
application.

2.1 Part 1 - Create the Application
First step is to create the project.

Open Visual Studio 2013.

From the menu, select File->New->Project. The New Project dialog appears.
From the templates, select Visual C#->Windows.

The click on Windows Form Application.

Name the project MSR114_CS.

Click OK.

ogkrwnE

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 4

http://www.annabooks.com/Book_PGPOS.html

finnabgoks- V13

e ===

b Recent |.NET Framework 4 -| Sort by: |Defau|t v| = Search Installed Templates (Ctrl+E) P~
4 Installed c - o .
| | Windows Forms Application Visual C# Type: Visual C¥
E
4 Termnplates A project for creating an application with a
c# . .
b Visual Basic r WPF Application Visual C2 Windows Forms user interface
4 Visual C# i
" c#
Windows E Console Application Visual C#
Cloud
. cx
Reporting E][si! Class Library Wisual C#
Silverlight -
Test 0 iy . - "
& ! Portable Class Library Visual C#
WCF -
CH#
Workflow WPF Browser Application Visual C#
b Visual C++ <
b Visual F# -c . . .
Empty Project Wisual C#
TypeScript m]
CH#
Python) = Windows Service Visual C#
I Other Project Types
Medeling Project: c#
. ID Sing Frejects iiﬂ WPF Custom Control Library Visual C& i
===== e
b Online Click here to go online and find templates.
Name: [MsR114_C9| |
Location: |C:\POS\apps\ v|
I Solution name: MS5R114_CS Create directory for solution

[] Add to source control

[QK] [Cancel

A -

7. Adjust the size of Form1 to accommodate long humbers.
8. On the form, add a TextBox control and two Labels with the following properties:

TextBox:
Name: txtinput

Labell:
Name: IbIMSRData
Text: MSR data:
Font: Arial, Regular, 12pt

StatusStrip->Label:
Name: TTStatus
Text: Ready
Font: Arial, Regular, 12pt

9. Save the project.

2.2 Part 2: Adding the POS for .NET Libraries and Code
Next, we add the Microsoft.PointOfService.dll and the code for the MSR.

1. From the menu, select Project->Add Reference. This will open the Add Reference dialog.

2. Click on the Browse tab, and locate the Microsoft.PointOfService.dll found under c:\Program
Files(x86)\Microsoft point of Service\SDK.

3. Click on the OK button.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 5

finnabgoks- V13

Solution Explorer = I
N e-eam| =7

Search Selution Explorer (Ctrl+;) P~

- J Properties -

4 B References
-0 Microsoft.CSharp
-0 Microsoft.PointOfService
=0 Systemn
50 Systermn.Core
u-B Systern.Data
5-B Systern.Data.DataSetBxtensions
5B Systern. Deployment
5B Systemn.Drawing
5B Systern.Windows. Forms
u-B Systern.Xml
u-B Systern.Zml.Ling
B Forml.cs
Solution Explorer

4. Open Form1.CS in code view.
5. Atthe top of the code before the From1 class, add the imports:

using Microsoft.PointOfService;

6. After the Public Partial Class Form1, add the following:

private PosExplorer myExplorer;
private Msr myMsr;

1. Inthe Forml() method, add the following code after the InitializeComponent() call:

myExplorer = new PosExplorer (this);
myExplorer.DeviceAddedEvent += new DeviceChangedEventHandler (myExplorer DeviceAddedEvent) ;
myExplorer.DeviceRemovedEvent += new DeviceChangedEventHandler (myExplorer DeviceRemovedEvent) ;

DeviceInfo device = myExplorer.GetDevice ("Msr");

if (device == null)
{
TTStatus.Text = "Msr Not Found";
}
else
{
myMsr = (Msr)myExplorer.Createlnstance (device);

myMsr.Open () ;

myMsr.Claim(1000) ;

myMsr.DataEvent += new DataEventHandler (myMsr DataEvent);
myMsr.DeviceEnabled = true;

myMsr.DataEventEnabled = true;

myMsr.DecodeData = true;

TTStatus.Text = "Found Msr - Ready";

Notice that we are getting the Msr device by default and not using a logical name. Therefore, we will have
to remove any other Msr service objects that may be in the system.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 6

AAinnabgoks: VL3

After you enter += for each event, hit Tab twice so Visual Studio can automatically generate the event
callback.

2. Save the project.
3. Add the following code to the myExplorer_DeviceAddedEvent subroutine:

if (e.Device.Type == "Msr")

{
myMsr = (Msr)myExplorer.CreateInstance (e.Device);
TTStatus.Text = "Found Msr - Ready";

myMsr.Open () ;

myMsr.Claim (1000) ;

myMsr.DataEvent += new DataEventHandler (myMsr DataEvent) ;
myMsr.DeviceEnabled = true;

myMsr.DataEventEnabled = true;

myMsr.DecodeData = true;

4. Save the project.
5. Add the following code to the myExplorer_DeviceRemovedEvent:

if (e.Device.Type == "Msr")

{
myMsr.DataEventEnabled = false;
myMsr.DeviceEnabled = false;
myMsr.Release () ;
myMsr.Close () ;
TTStatus.Text = "Found Msr - removed";

6. Save the project
7. Add the following code to the myMSR_DataEvent subroutine

ASCIIEncoding myEncoding = new ASCIIEncoding();
txtInput.Text = myEncoding.GetString (myMsr.Track2Data);
myMsr.DataEventEnabled = true;

The last step is to re-enable data events so other Msr swipes can be made.

8. Save the project.

2.3 Part 3: Build and Test

The project can now be tested, but first we need to isolate the MSR being used. The first steps are to
move the example service object and the simulator service object to another location. We can then test
the application.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 7

Annabgsoks- e
-
o) Microsoft PCS Tester
Refresh | lOpostCompatibil'rtyLeveH ZI I 2 l
& MS’ Clear Results |
i i Microsoft Msr Simulator
i ExampleMsr
- Keylock
. i Microsoft Keylock Simulator
- Scanner
[)- CashDrawer
. L. Microsoft CashDrawer Simulator
[)- CheckScanner
. L. Microsoft CheckScanner Simulator
~- LineDisplay
&) PinPad
&) PosPrinter
(- PosKeyboard
1. Open File Explorer.
2. Go to the C:\Program Files (x86)\Microsoft Point Of Service\SDK\Samples\Simulator Service
Objects directory.
3. Cut and paste Microsoft.PointOfService.DeviceSimulators.dll to C:\Program Files (x86)\Microsoft
Point Of Service\SDK\Samples
4. If you are using the Example service Object from the SDK, skip to step 6. Go to C:\Program Files
(x86)\Microsoft Point Of Service\SDK\Samples\Example Service Objects.
5. Cut and paste Microsoft.PointOfService.ExampleServiceObjects.dll to C:\Program Files
(x86)\Microsoft Point Of Service\SDK\Samples.
Name . Date modified Type Size
Example Service Objects 6/10/2014 5:30 PM File folder
., Sample Application 5/23/2014 10:07 AM File folder
. Simulator Service Objects 6/10/2014 5:30 PM File folder
%] Microsoft.PointOfService.DeviceSimulators.dll 3/6/201412:35PM Application extension 262 KB
%] Microsoft.PointOfService.ExampleServiceObjects.dll ~ 3/6/2014 12:35 PM Application extension 40 KB
EIH PosSamples.sin 12/17/2013 1:54 PM Microsceft Visual Studio Selution 4 KB
41 PosSamples.v12.suo 1/29/2014 10:01 AM Visual Studio Sclution User Opti... 32KB

The above steps remove the extra virtual Msr’s that are not needed for the application. The program will

select the first Msr as the default, and we want it to be the actual physical Msr, rather than the simulator

service object.

6. Make sure the MSR is not attached to the system.

7.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.

06/11/14

In Visual Studio, run the application.

finnaha - V13

P o

)
& Forml [ESREEE

MSR Data
I

Msr Not Found

8. Connect the MSR.

MSR Data
I

Found Msr - Ready

9. Swipe a card to read the data.

[Form1 1* o 5

MSR Data

0001011657860200916578009165/7/81143130

Found Msr - Ready A I

10. Unplug the MSR.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 9

finnabgoks- V13

ol Forml [‘:' =] ﬁ

MSR Data
000101165786020091657/8009165781143190)

Found Msr - removed

A -

11. Close the application.

3 Upgrade Applications to .NET Framework 4.x

For those of you who have built applications with an older Visual Studio version, updating the POS for
.NET portion of the project requires a few changes. These steps are only for POS for .NET. If you are
using other libraries in your project, you might have to upgrade those as well.

3.1 Updating A C# Application

Using an example from the book, EX31 Bar_Code_CS, here are the steps to update a POS for .NET
v1.12 project to POS for .NET v1.14.

1. Download and extract the Book Exercises for Professional's Guide to POS for .NET
http://www.annabooks.com/Book PGPOS.html.

Open Visual Studio 2013.

From the menu Select File->Open->Project/Solution.

Locate and open EX31_bar_Code_CS.

A dialog appears about trustworthy source, click OK to continue.

You should only open projects from a trustwoerthy source,

akrwnN

The project file EX31_Bar_Cede_C5 may have come from a location that is not fully trusted. It could present a
security risk by executing custom build steps when opened in Microsoft Visual Studio that could cause damage to
your computer or compromise your private information.

Would you like to cpen this project?

[] Ask me for every project in this solution

Cancel

6. Visual Studio 2013 will open the C# project without errors. Try building the application and you
will see errors referencing the old assembly.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 10

http://www.annabooks.com/Book_PGPOS.html

nnah . V1.3

4

w
o Forml.es £ X

2
b #3 £X31_Bar_Code CS.Forml ML myPosExplorer -
1/ /EX31_bar_Code_CS +
I -
/#5731 Embedded Micro Solutions N
/ /v, sjjmicro.com / www.seanliming.com
//Copyright (c) 2@@6-2811 517 Embedded Micro Solutions A1l Rights Reserved
I .
//Source code is provided as is without any warranty. Any errors or omissions shall not imply any 1
/f1liability for direct or indirect censequences arising from the use of this source cede. The authors
/fand reviewers make no warranty for the correctness or for the use of this source code, and asseme no
//1liability for direct or indirect damages of any kind arising from the use of this source code.
I
//The author resrves the right to make changes in this source code without notice and without 3
Sfincurring any liability. .
L7 (]
Flusing System;
using System.Collections.Generic;
using System.ComponentModel; -
100% - 4 4
Error List o x
T - | €3 6 Errors | 1 13 Warnings 0 Messages Search Error List P~
Description File Line Column Project -
A] The primary reference "Microseft.PointOfService, Version=112.0.0, Culture=neutral, EX31_Bar_Code_CS
PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL" could not be resolved because it
irect dependency on the NET Framewerk assembly "mscorlib, Version=4.0.0.0,
eutral, PublicKeyToken=b77a5c561934 089" which has a higher version "4.0.0.0" than the
version "2.0.0.0" in the current target framework.
1 2 The primary reference "Microsoft.PointOfService, Version=1.12.0.0, Culture=neutral, EX31_Bar_Code_CS
PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL" could not be resolved because it
has an indirect dependency on the NET Framework assembly "System.Windows.Forms, -

Error List Mel¥iia3

7. From the menu, select Project->EX31_Bar_Code_CS Properties.

8. Change the Target Framework from 3.5 to 4.0.

9. A dialog will appear asking if you really want to do this, click Yes. This is a simple application. If
there were any APIs specific to .NET Framework 3.5, you will have to use the new ones for 4.0.

EX31_Bar_Code_ CS &
Application

N/A Platform: |N/A
Build
Build Events Assembly name: Default namespace: -
Debug EX31_Bar_Code_C5 EX31_Bar_Code_C5
Resources Target framework: Output type:
Services ’.NI:—I' Frarmework 4 v] ’Windows Application -
= - = E
Settings Startup object: Target Framework Change LJ“*
Reference Paths ’ (Mot set) |
Signing @C% Changing the Target Framework requires that the current project be
Security Resources W' closed and then recpened. B |
Soecify h licati il b Any unsaved changes within the project will be automatically saved.
BB pecify how application resources will be ma
= - Changing Target Framework may require manual modification of
: @ 1 d fest A -
Code Analysis 2 feen an. mante . . . project files in order to build.
A manifest determines specific settings fa
your project and then select it from the lig} Are you sure you want to change the Target Framework for this project?
Tran -

= e I

T '| €3 6 Errors | ! 13 Warnings | 0 Messages

Description File Line Column Project

10. In Solution Explorer, delete the reference for the old POS for .NET 1.12.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 11

finnabgoks- V13

Solution Explorer
@ e-ea@ F=51
Search Solution Explorer (Ctrl+;)

4 w-B References -~

View in Object Browser
Add Fakes Assembly

R Del
X Remove € ern.Data.DataSetExtensions

ern.Deployment

=0 Systern.Drawing
u-B Systern. Windows.Forms

—_ - f L

L)

Properties Alt+Enter

11. From the menu, select Project->Add Reference. This will open the Add Reference dialog.

12. Click on the Browse tab, and locate the Microsoft.PointOfService.dll found under c:\Program
Files(x86)\Microsoft point of Service\SDK.

13. Click on the OK button.

14. Save the project

15. Try rebuilding the project, and this time it should succeed.

T

Output > X
Show output from: | Build '| | | | = | ta
13------ Rebuild A1l started: Project: EX31_Bar_Code_CS, Configuration: Debug %86 ------ e

1> EX31_Bar_Code_CS5 -»> C:\POS\Chapter 3\EX31_Bar_Code_CS\EX31_Bar_ Code_CS5\bin\Debug\EX31_Bar Code_C5.exe
========== Rebuild All: 1 succeeded, @ failed, @ skipped ==========

3.2 Updating A VB.NET Application

VB.NET conversion is a little different from C#. We will use the VB.NET version of the application above:
EX31_Bar_Code.

Open Visual Studio 2013.

From the menu Select File->Open->Project/Solution.

Locate and open EX31_bar_Code.

If asked about a trusted source, click Ok.

If you run the application, you will get an assembly error.

From the menu, select Project->EX31_Bar_Code Properties.

Change the Target Framework from 3.5 to 4.0.

A dialog will appear asking if you really want to do this, click Yes. This is a simple application. If
there were any APIs specific to .NET Framework 3.5, you will have to use the new ones for 4.0.

ONoO~WNE

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 12

finnabsoks- V13

g £ _6ar Code = > |

Application

N/A Platform: |N/A
Compile
Debug Assembly name: Root namespace: nd
References EX31_Bar_Code E¥31_Bar_Code
Resources Target framework: Application type:
Services [.NET Framework 4 -] [Windows Forms Application A =
- - ~
Settings Startup form: Target Framework Change l-:J
Signing [Forml
My Extensions . Changing the Target Framework requires that the current project be [
Security ’ Assembly Information...] ’ View Wind " closed and then reopened.
Any unsaved changes within the project will be automatically saved.
Publish

EvabEspplicatiopiiametotk Changing Target Framework may require manual modification of

Code Analysis project files in order to build,

Windows application framework properties
Are you sure you want to change the Target Framework for this project?
Enable XP visual styles v

Error List [Yes J ’ No] [Help] |
T '| €3 7 Errors | 1 14 Wamings | 0 Messages P

Moo ofnioo - s ol em ey -

9. Click on the References tab, you will notice that Microsoft.PointOfService 1.14 is already
referenced.

EX31_Bar_Code +

Application T A
Compile
Debug Ref . Unused References...] [Reference Paths... ol
ErEnces:
Reference Name Type Version Copylocal Path
Resources Microsoft.PointOfService i 11410 False C:\Program Files (x86)\Microsoft Point Of Service\SDK\Microsoft.PointOfService.dll
Services System MET 4000 False C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework!| | =
Settings Systemn.Core MET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework!
Fanfre Systermn.Data MET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework!
_ Systermn.Data.DataSetExtensions .WET 4.0.0.0 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework)
Lty Binane Systern.Deployment NET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\ NETFramework!| -
Security Systern.Drawing NET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework)
Publich System.Windows.Forms MET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework!
System.Xml NET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework)
Griniediss System.Xml.Ling MET 4000 False C\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework!
4| 1 | 3
- 1 - 1 S

10. Build the application again, and it should build successfully.

Output

Show output from: | Build '|| | | = | ¥a

—————— Build started: Project: EX31_Bar_Code, Configuration: Debug %86 ------ -
EX31_Bar_Code -»> C:\POS\Chapter 3\EX31_Bar_Code\EX31_Bar_Code\bin‘Debug\EX31_Bar_Code.exe
========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

TR Output

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 13

finnabsoks-

4 32bit versus 64bit Support

POS for .NET 1.12 only supports 32-bit applications. POS for .NET 1.14 adds 64-bit support, but 64-bit
support is a little tricky. All OPOS and Service Objects created with POS for .NET 1.12 are 32-bit. A 64-bit
application cannot access a 32-bhit OPOS or Service Object.

For example, | recreated the book’'s EX31_Bar_Code project from scratch using Visual Studio 2013 and
POS for .NET 1.14. The bar code scanner is the Honeywell IT5600. The IT5600 POS for .NET 1.12
Service Object was the latest from Honeywell. Building the application was clean, but when | ran the

application, a run-time

B Forml.cs + X g Desig
i BarCodel.Forml

error appeared.

~|® FormlQ

BEE &]

if (device == null)

else

{

DeviceInfo device = myPosExplorer.GetDevice("Scanner”, "IT560@");
//DeviceInfo device = myPosExplorer.GetDevice("Scanner”, "myScanner”);

1stItems.Items.Add("Scanner not found”);

myScanner = (Scanner)myPosExplorer.CreateInstance(device);

3 .open();!
myScanner.Claim(16¢

x

myScanner.DataEven
myScanner.DeviceEn
myScanner . DataEven
myScanner . DecodeDat
}
}

= void myScanner_DataEvent(ol

ASCIIEncoding myEncodif
1stItems.Items.Add(myE

100%
Name Value
b @ device {Service Object Name: H

b @ myPosExplorer
b @ myScanner
b @ this

{Microsoft.PointOfServi
{HHP.PointOfService.Se
{BarCodel Forml, Text:

Autos BEJIERRVET BE

Ready

An unhandled exception of type 'System.BadlmageFormatException’ occurred in

HHScannerSO4NET.dlI

Additional information: An attempt was made to load a program with an

incorrect format. (Exception from HRESULT: 0x8007000B)

Troubleshooting tips:

[iake sure you have supplied 2 correct file path for the assembly.:

Make sure the file image is a valid managed assembly.

Get general help for this exception.
Search for more Help Online...
Exception settings:
[T Break when this exception type is thrown
Actions:
View Detail...
Copy exception detail to the clipboard

Open exception settings

PR T

Line 35
Linel18

bw Immediate Window Output

b 4] ¢

e e

[All Categories][4l Threads -
Search r

O Debugger: Beginning of Application: Main, Program.c

[Exception: Thrown: "An attempt was made to load 2 £

[Exception: Caught: "An attempt was made to load a p

@ Exception: Thrown: "An attempt was made to load a £

© Debugger: Stopped at Exception: logDebugData

© Live Event: Exception Intercepted: .ctor, Formi.cs line
An exception was intercepted and the call stack
unwound to the point before the call from user code
where the exception occurred. "Unwind the call stack

on unhandled exceptions” is selected in the debugger
options.

Time: 6/4/2014 8:20:22 PM
Thread: <No Name> [2680]
Related views: Locals Call Stack

[T Solution Explorer Team Explorer

Ln35 Col17 Ch17 INS

The problem was that the project was set to run as “Any CPU” by default. On a 64-bit system the
application runs in 64-bit mode.

‘g{‘ BarCodel + X JFufiia

o

o Application

k]

g

3

5 Build Events

=]

éF Debug
Resources

g

& Services

g

e 5

s Settings

&

Reference Paths
Signing
Security
Publish

Code Analysis

Forml.cs [Design]

Configuration: |Active (Debug) >

General -

Conditional compilation symbols:
[¥] Define DEBUG constant

[¥] Define TRACE constant

Platform target:

[7] Allow unsafe code
[”] Optimize code
Errors and warnings -

Warning level:

Platform: |Active (Any CPU) ¥

Any CPU -

mn

Since the Service Object is 32-bit, the application should be set to 32-bit.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.

06/11/14

14

finnabgoks- V13

BarCodel* + X iRy Forml.cs [Design]

Application 5 = T R S
Configuration: |Active (Debug) ¥ Platform: |Active (Any CPU) n
Build*

Build Events General =

Debug - -
Conditional compilation symbols:

Resources
|¥| Define DEBUG constant

m

Services 5
. [V] Define TRACE constant
Settings

532In0g§ eleQ X0q|oo) Jaiojdxg Jamag

Reference Pths Platforntaget
it Any CPU
Signing [
Security [] Allow unsafe code)(64—
Publish || Optimize code
Code Analysi
odeAnaysis Errors and warnings

After rebuilding, the application runs successfully. If you really want a 64-bit application, you’re going to
be stuck in this case. The POS for .NET online documentation discusses the 32-bit vs. 64-bit issue and
how to modify the registry for 32-bit OPOS drivers so that 64-bit applications can interact with a 32-bit
OPOQOS driver via IPC and marshaling. There is nothing obvious or discussed on how to re-register Service
Objects in this manner. You will have to wait until the POS device manufacturer releases a 64-bit Service
Object or continue with 32-bit development, which brings us to the last topic on Service Objects.

5 Service Objects and More 32-bit versus 64-bit

To explore the 32-bit and 64-bit dynamic a little further and review service object development, |
recreated the Avery Berkel 6710 scale service object from the book using POS for .NET 1.14 and Visual
Studio 2013. | also updated the ScaleSOTest application to test the service object. The following sections
report what was found:

5.1 Information on Creating Service Objects in POS for .NET 1.14

The steps to create service objects have not changed, but there are a few changes in filling out the code.
When you enter “Inherits ScaleBasic” class, there are some addition capabilities and features added to
meet the changes in the UnifiedPOS 1.14 specification. For the scale service object, there were some
capabilities and subroutines added for pricing. Each service object is different. If you are a service object
developer, you will have to be aware of these changes. Also, the SecurityAction items in Assembylnfo.vb
file are no longer needed and can be removed:

<Assembly: PermissionSet(SecurityAction.RequestMinimum, Name:="FullTrust")>
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, Execution:=True,
ControlAppDomain:=True)>

<Assembly: ReflectionPermission(SecurityAction.RequestMinimum)>

5.2 Managing Service Objects in POS for .NET 1.14

Managing service objects has not changed. POSDM.EXE and the WMI capabilities operate as before. It
was a little concerning that POSDM and the WMI was not available in the beta, but it appears to be
working as before. Any custom application used to manage service objects will have to be updated. We
are working on an updated SOManager utility.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 15

finnabgoks- V13

[.
a Service Object Manager = | = l
i I

POSDevices: For use managing POS for .NET Service Objects. Must run with elevated privileges.

SoNAME Legacy? Enabled? Default? Path
Microsoft Msr Simulator False True False
Microsoft Keylock Simulator False True False
Microsoft Scanner Simulator False True False
Microsoft CashDrawer Simulator False True False
Microsoft Check Scanner Simulator False Tue False
Microsoft LineDisplay Simulator False True False
Microsoft PinPad Simulator False True False
Microsoft PosPrinter Simulator False True False
Microsoft PosKeyboard Simulator False True False
HoneywellScannerSO False True False
Avery Berkel 6710 Scale False True False

Add Logical Name Enable/Disable
Set NonPnP Path Delete NonPnP Device

Default (Toggle)
O e [N Tl SEAN-PC Change Computer
Remove Logical Name

/! giCa
Annabgoks-
Copyright © 2007-2014 Annabooks, LLC. All Rights Reserved.
Applications is provided AS IS without any warranty.

Get POS Devices 1 cgical Bame;

NonPnP Path:

5.3 32-bit versus 64-bit Service Object Investigation

With the test application and service object updated to POS for .NET 1.14 and .NET Framework 4.0, |
tested to see what happens when the test application and service object are compiled to AnyCPU, x86,
and x64. The test computer was running Windows 7 64-bit operating system. The table below shows the
results:

Service Object
- AnyCPU x86 x64
2 [AnyCPU Yes No Yes
@©
= [x86 Yes Yes No
o
£ [x64 Yes No Yes

When the service object is compiled as AnyCPU, any compiled version of the application will run. If the
service object is compiled with x86, only the x86 application will run. The inverse happens when the
service object is compiled to x64. The next logical test is to run the tests on a Windows 7 32-bit operating
system, but | will leave this test to the reader.

Copyright © 2014 Annabooks, LLC., All Rights Reserved.
06/11/14 16

