Annabgoks®

Azure RTOS and ST Microelectronics STM32 Discovery Kit loT

(STM32L4S5)

By Sean D. Liming and John R. Malin
Annabooks — www.annabooks.com

May 2023

There are a number of Azure RTOS online guides to get started with different platforms. The
STM32L4S5 Discovery Kit is one of the first platforms that demonstrated connecting to Azure loT
Central. If you follow the quick start online documents, you will be able to build the example
application from the command line and get it to run. If you want to use the example applications as
a basis for a project, being able to debug by stepping through the code is going to be important. In
this paper, we will walk through the example but set up the development environment to use Visual
Studio Code.

Target Hardware: STM32L4S5 Discovery Kit (BL-4S5I-IOT01A)

1 Tools Setup

For this setup will we need to download and install a few items.

1. Download and install Visual Studio Code: Visual Studio Code - Code Editing 1.69.2.
2. Once Visual Studio Code has been installed, install the following add-ons from the Visual
Studio Code marketplace:

C/C++ - Visual Studio Marketplace

CMake Tools - Visual Studio Marketplace
CMake - Visual Studio Marketplace
Cortex-Debug - Visual Studio Marketplace
Embedded Tools - Visual Studio Marketplace
Windows-arm-none-eabi — Visual Marketplace

3. Install Git so we can download the Azure RTOS to get started building the files: Git -
Downloads (git-scm.com).

Accept the license, and click Next.

Leave the install location as is, and click Next.

Leave the Selected Components as they are, and click Next.

Keep the State Menu Folder as is, and click Next.

Set the default editor selection to be “Use Visual Studio Code as Git's default

editor”, and click Next.

PaoTO

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

http://www.annabooks.com/
https://learn.microsoft.com/en-us/azure/iot-develop/quickstart-devkit-stm-b-l4s5i?pivots=iot-toolset-cmake
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools
https://marketplace.visualstudio.com/items?itemName=twxs.cmake
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-embedded-tools
https://marketplace.visualstudio.com/items?itemName=metalcode-eu.windows-arm-none-eabi
https://git-scm.com/downloads
https://git-scm.com/downloads

Annabgoks®

4 Git2.37.1 Setup

Choosing the default editor used by Git
Which editor would you like Git to use?

Use Visual Studio Code as Git's default editor ~

Visual Studio Code is an Open Source, lightweight and powerful editor

running as a desktop application. It comes with built-in support for JavaScript,
TypeScript and Mode. js and has a rich ecosystem of extensions for other
languages (such as C++, C#, Java, Python, PHP, Go) and runtimes (such as
.MET and Unity).

(WARNING!) This will be installed only for this user.

Use this option to let Git use Visual Studio Code as its default editor,

Keep the default for initial branches, and click Next.

Keep the default PATH Environment, and click Next.

Keep the default OpenSSH selection, and click Next.

Select “Use Windows’ default console window”, and click Next.

Q-

& Git 2.37.1 Setup

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

(_) Use MinTTY (the default terminal of M5Y52)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty ™ to work in MinTTY.

(®) Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe”), which works well
with Win32 console programs such as interactive Python or node.js, but has a
wvery limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

[only show new aptions Back Cancel

Keep the defaults for the next question, and click Next.

Select “Use Windows’ default console window”, and click Next.
Keep the defaults for the next question, and click Next.

Keep the defaults for the next question, and click Next.

Keep the defaults for the extra options, and click Next.

Keep the defaults for the experimental options, click Install.
Click Finish once the install completes.

TOS3TFT

4. Download and install ABCOMTERM from Annabooks.com. This will be the terminal
program to see the standard output from the device.
5. Reboot the computer.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabgoks®

2 Visual Studio Code Sample Application

2.1 Download the Getting Started Files from GitHub

Now, we need to get the getting started repository that contains the Azure RTOS build example
and the ports to the B-L4S5I-IOT01A and other development kits.

1. Create a directory called \Azure-RTOS-STM32.

2. Open PowerShell.

3. Change the directory to the newly created folder:
cd \Azure-RTOS-SM32

4. Run the following

git clone --recursive https://github.com/azure-rtos/getting-started.git

| 2 Administrator: Windows PowerShell

flindows Pao ell
Copyright (C icrosoft Corporation. All rights reserved.

<a.ms/pscoreb

‘github.com/azure-rtos/getting-started.git

: Enumerating abj
: Counting

2.2 Create Azure IoT Central Application
Now we need to set up the application on Azure loT Central.

In a browser, open https://apps.azureiotcentral.com/home
Sign into the account or create an account.

Click on Build App.

In the Custom app tile, click Create app

PN

Application Name: STM32-getting-started.
Pricing Plan: Free.

5. Click Create.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://apps.azureiotcentral.com/home

Rev 2.2

Annabsoks®

@) Azure loT Central

= Build > New application

@ Home New application = Custom
I T Build Answer a few quick questions and we'll get your app up and running.
BR My apps About your app

Application name * ()

‘ 5TM32-getting-started

URL* (@)

‘ stm32-getting-started .azureiotcentral.com

Application template * (0

‘ Custom application

Pricing plan
i@ Free
Try for 7 days with no commitment

5 free davicas

(O Standard 0
For devices sending a few messages per day

2 free devices 400 messages/mo

(O Standard 1
For devices sending a few messages per hour

2 free devices 5,000 messages/mo

(O Standard 2 {most popular)
For devices sending messages every few minutes

2 free devices 30,000 messages/mo

By clicking "Create” you agree to the Subscription Agreement = and Privacy Statement =7, Provisions in the
agresment with respect to pricing, cancellation fees, payment, and data retention do not apply to "Free’.
“Standard" plans require an Azure subscription, and you acknowledge that this service is licensed to you under

the terms applicable to your Azure Subscription £,

Note: Pricing plans can change.

6. Now, we need to add a device to the application and click on the +New button that is above
the All Devices section.
7. Enter the following:
a. Device Name: mySTM32
b. Device ID mystm32
8. Click Create.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2

Annabscoks®

Create a new device X

To create a new device, select a device template, a name, and a unique ID. Learn more =

Device name * ()

| mySTM32 |

Device ID * (1)

| mysthZl X |

Device template *

| Unassigned '

Simulate this device?
A simulated device generates telemeatry that enables you to test the behavior of your application before you connect a real
device.

@

9. Click Create.
10. The device will be created and listed under all devices

Devices < i Import %= v o

Filter templates ‘

— All devices
All devi
evices Device explorer helps you see all your devices. Detailed information like device raw data helps you troubleshoot. Learn more =%
Device name Device ID Device status Device template Organization
mysTM32 mystm32 Registerad Unassigned STM32-getting-started

11. Click on mySTM32. This will be the view of the data coming in.
12. Click on Connect at the top of the bar.

& Connect &, Manage template ~ (@& Manage device

Devices > mySTM32

mySTM32

| Last data received: NJA | Status: Registered | Organization: STM32-getting-started

fa—
Raw data Mapped aliases

Timestamp | Message type Event creation time Unmodeled data

No rows found

13. A Device Connections group box appears. Copy the following information and paste it into
a Notepad or Notepad++ temporary document. We will need this in the next section.

e ID scope

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2

Annabscoks®

e Device ID
e Primary Key

14. Close the dialog when finished.

No need to set up a template as pre-published template for the STM32L4S5 Discovery Kit will be
used to display the data.

2.3 Building the Getting Started Sample App

With the application created in Azure loT Central and the device information collected to make the
connection, we are ready to build the example.

1. Open PowerShell and change the directory to \Azure-RTOS-STM32\getting-started\
STMicroelectronics\B-L4S5I-I0OTO1A.
2. Type the following and hit enter to open Visual Studio Code:

code .

3. You will be asked to trust the authors of the code. Click Yes.

4. When asked for the toolchain at the top, accept arm-gcc-cortex-m4.

5. Under B-L4S5I-I0TO1A\App, open Azure_config.h and fill in the information gathered from
the Azure loT Central application, as well as, your Wi-Fi connection settings:

Constant name Value
I0OT DPS ID SCOPE ID scope value
IOT_DPS REGISTRATION_ID Device ID value
IOT_DEVICE_SAS KEY Primary key value
WIFI_SSID Your Wi-Fi SSID
WIFI_ PASSWORD Your Wi-Fi password
WIFI_MODE WEP, WPA PSK TKIP, or WPA2 PSK AES

6. Save the file.
7. At the bottom, click on Build. It will take a few minutes, but the build should complete
successfully

PROBLEMS OUTPUT DEBUG CONSOLE ERMINAL

[build] [12@1/1285] Linking C static library lib\netxduo\addons\azure_iot\azure_iot_security_module\iot-security
[build] [12@2/1285] Linking C static library lib\netxduo\addons\azure_iot\azure_iot_security_module\libiot_secur
[build] [1283/1285] Linking € static library lib\netxduo\libnetxduo.a

[build] [1284/1285] Linking C executable app\mxchip_azure_iot.elf

[build] Memory region Used Size Region Size %age Used
[build] RAM: 119328 B 128 KB 91.84%
[build] FLASH: 625524 B 1 MB 59.65%
[build] CCMRAM: @ GB G4 KB 2.88%

[build] [1285/1285] cmd.exe /C "cd /D E:\Azure-RTOS-MXCHIP\getting-started\MXChip\AZ73166\build\app && "C:\Progra
-Obinary mxchip_azure_iot.elf mxchip_azure_iot.bin && "C:\Program Files (x86)\GNU 4rm Embedded Toolchain‘ie 2821
[build] Build finished with exit code @

Build 3§ [arm-gcc-cortex-md] [[Targets InPreset]] £ [> 38 No Test Preset Selected

2.4 Program the STM32L4S5 Discovery Kit Board
With the stm32I4s5_azure_iot.bin build, programming the board is a simple copy and paste.

1. Open File Explorer.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabgoks®

2. Navigate to the \Azure-RTOS-STM32\getting-started\STMicroelectronics\B-L4S5I-
IOTO1A\build\app folder. The newly created stm32I4s5 azure_iot.bin file should be

present.
.

Mame Date modified Type Size

CMakeFiles 7/2ir2 File folder

cmake_install.cmake T CMake Source File 2 KB
|| stmn3214s5_azure_iot.bin T BIM File 371 EEB
|| stm321455_azure_jot.elf T ELF File 6,567 KB
|| stm3214s5_azure_iot.hex T HEX File 1,043 KB

3. Connect the USB cable from the B-L4S5I-IOTO1A to your development computer.

4. Copy and paste the mxchip_azure iot.bin into the <drive letter>DIS_L4S5VI folder.
Programming starts automatically. The Red LED will be lit and go off when completed.

5. Open a serial terminal program and connect to AZ3166 COM port and set the baud rate to
115200. ABCOMTERM sets the baud rate to 115200 by default.

6. Hit the reset button on the B-L4S5I-IOTO1A

If all goes well, you will see the terminal output with something similar to the following:

Starting Azure thread

Initializing WiFi
Module: ISM43362-M3G-L44-SPI
MAC address: C4:7F:51:91:44:40
Firmware revision: C3.5.2.5.STM
SUCCESS: WiFi initialized

Connecting WiFi
Connecting to SSID 'Net1980i8085'
Attempt 1...

SUCCESS: WiFi connected

Initializing DHCP
IP address: 192.168.1.41
Mask: 255.255.255.0
Gateway: 192.168.1.1
SUCCESS: DHCP initialized

Initializing DNS client
DNS address 1: 192.168.1.1

DNS address 2: 8.8.8.8
SUCCESS: DNS client initialized

Initializing SNTP time sync

SNTP server 0.pool.ntp.org

SNTP time update: Jul 28, 2022 2:6:40.16 UTC
SUCCESS: SNTP initialized

Initializing Azure IoT DPS client
DPS endpoint: global.azure-devices-provisioning.net

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2

Annabscoks®

DPS ID scope: ©ne@06DOBC8
Registration ID: mystm32
SUCCESS: Azure IoT DPS client initialized

Initializing Azure IoT Hub client
Hub hostname: iotc-12a55b58-481c-4eed-a3b5-ab@11bad4366b.azure-devices.net
Device id: mystm32
Model id: dtmi:azurertos:devkit:gsgstml4s5;2

SUCCESS: Connected to IoT Hub

Receive properties: {"desired":{"$version":1},"reported”:{"$version":1}}
Sending property:
$iothub/twin/PATCH/properties/reported/?$rid=3{"deviceInformation":{"__t":"c", "manufact

urer":"STMicroelectronics", "model" :"B-L4S5I-I0TO1A", "swVersion":"1.0.0", "osName":"Azure
RTOS", "processorArchitecture":"Arm Cortex

M4" ,"processorManufacturer":"STMicroelectronics"”,"totalStorage":2048, "totalMemory":640}
}

Sending property: $iothub/twin/PATCH/properties/reported/?$rid=5{"ledState":false}
Sending property:
$iothub/twin/PATCH/properties/reported/?$rid=7{"telemetryInterval”:{"ac":200,"av":1,"va
lue":10}}

Starting Main loop
Telemetry message sent: {"humidity":40.86,"temperature”:28.83,"pressure":996.96}.

“Azure loT” will appear on the little screen; and in the browser, refresh the screen to see the
mySTM32 device filled with data.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2
nnabsoks®

‘mm mw moll

& Connect B, Manage template ~ (&) Manage device ~

Devices » STM L4S5 Getting Started Guide > mySTM32

mySTM32

@ Connected | Last data received: 7/27/2022, 7:16:29 PM | Status: Provisioned | Organization: STM32-getting-started

=

About Overview Command Rawdata Mapped aliases

Temperature, Humidity, Pressure, Gyroscope X Ve Temperature Ve Humidity Ve
® Temperature ® Humidity ® pressure Gyroscope X
“ 30.90 37.47
. .
304 /‘/ Average, Past 12 hours Average, Past 12 hours
409
384
36 Pressure v Gyroscope X Ve
997 J_\[\/\/
996.98 11,03
100,000 * I v
004
T T
0%?'24!?2%312 0%3'2%2%5‘2 Average, Past 12 hours Average, Past 12 hours
Magnetometer X / ... Ve MagnetometerY / ... Ve Magnetometer X / mgauss, Magnetometer Y / mgauss, Magnetometer ... Ve
® Magnetometer X.. ® Magnetometer ¥.. ® Magnetometer Z...
233.00 439.46 “
- . .
-2009
Average, Past 12 hours Average, Past 12 hours 004
4609
Magnetometer Z / mgauss e
440+
-398.62
.
400 -|
T T
06:46 PM 07:17 FM
Average, Past 12 hours 0712712022 0712712022
Accelerometer X, Accelerometer Y, Accelerometer Z s Accelerometer X s Accelerometer Y Ve
® Accalerometer X ® sccelerometer Y ® Accelerometer 2

-18.92 -24.62

2.5 Debugging the application

Now, we will step through the code to see how it works.

1. In Visual Studio Code, hit F5.
2. The binary will be downloaded and a breakpoint will be hit within main.c.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabgoks®

C main.c * > < + T O 0O~
AZ3166 > app > € main.c > @ main(void)

49 systick_interval set(TX_TIMER_TICKS_PER_SECOND);

t@

51 /{ Create Azure thread

52 UINT status = tx_thread_create(&azure_thread,

53 "Azure Thread",

54 azure_thread_entry,

55 8,

56 azure_thread_stack,

57 AZURE_THREAD_STACK_SIZE,

58 AZURE_THREAD_PRIORITY,

59 ZURE_THREAD PRIORITY,

@ o o i o R
@ D e~ o B W R @

71

3.
4.
5.

TX_NO_TIME_SLICE,
TX_AUTO_START);

if (status != TX_SUCCESS)

printf("ERROR: Azure IoT thread creation failed\rin");

int main(void)

// Initialize the board

| board_init();

// Enter the ThreadX kernel
tx_kernel_enter();

return @;

Click Step Over (F10) to move past the board initialization call.
Click Step Over (F10) and the application thread will kick off and run.
Stop the debugger (Shift+F5).

The files comprise the core functionality of the application are:

© N

10.
11.

12.
13.
14.
15.

main.c — sets up and runs the thread.

nx_client.c — creates the callback to send telemetry and handle receive commands.
Azure_iot_nx_client.c — this file has the main loop client_run(), which connects to Azure
loT Central and handles communications between the local application and the application
on Azure loT Central.

In main.c, set a breakpoint at line 34, which is the call to azure_iot_nx_client_entry.

In nx_client.c, set a breakpoint at line 330, which is within the azure_iot_nx_client_entry.
Also, in nx_client.c, set another breakpoint at line 211, which is the call to turn the LED on
or off.

Hit F5.

When the breakpoint hits in Main.c, hit F10 twice.

The debugger will break at line 34. Hit F11 to step into the to azure_iot_nx_client_entry
call.

The debugger opens nx_client.c and hits the breakpoint at line 330.

Continue to hit F10, but at Line 370, hit F11 to step into azure_iot_nx_client_dps_run.
Continue to hit F10, and at line 1199 at the return hit F11.

The debugger is now in the main loop in Azure_iot_nx_client.c. In Azure loT Central, click
on Command, set the LED State to True, and click Run.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2

AAnnabsoks®

& Connect &, Manage template ~ (& Manage device ~

Devices > STM L455 Getting Started Guide > mySTM32

= mySTM32

(=)
@ Connected | Last data received: 7/27/2022, 7:35:53 PM | Stat

About Owerview Command Faw data Mapped aliases

STM L4S5 Getting Started Guide / Set LED state ()

State (i)

‘ True

To see response, please check the command history

16. Go back and continue to hit F10. Eventually you should hit the breakpoint at line 211 in

nx_client.c.
17. Hit F5 to continue debugging, and the LED should turn on.

If you have installed the embedded tools into Visual Studio Code, you will be able to see the
Peripherals and Cortex Registers in the Debug section.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

AAnnabsoks®

Rev 2.2

~ BREAKPOINTS
® [mainc
® [nx clientc app
® [nx clientc app
~ CORTEX PERIPHERALS
ADC @ 0x50040000

AES @ 0x50060000
CANT @ 040006400
COMP @ 040010200
CRC @ 0x40023000
CRS @ 0x40006000
DAC @ 0x40007400

A Y

~ CORTEX REGISTERS
0o
ri
r2 o
r3 0
rd 134269287
r5 0
6 536922901
r7 536884432
ré o
s o
rioo
rio
ri2 10

Ir 134289511
~ PSR Ox010f0000
Megative Flag (N) 0

Zero Flag (2) D

Overflow Flag (V) 0

X @O0A0 £ L1455 Launch (B-L4S5I-IOTO1A)

In addition, there is a serial monitor that can read the standard output from the board.

Copyright © 2023 Annabooks, LLC. All rights reserved

Windows is a registered trademark of Microsoft Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

_tx_thread_shell_entry@@xezeefcda

ADC_Common @ 0x50040300

MEERACLL @ DrealinA 2000

Carry or borrow flag (C) 0

sp 0x200034c0 <azure_thread_stack+3752>

pc 0x800ca2c <command_received cb+188=

b4 [arm-gec-cortex-md]

E:/Azure-RTOS-5,

Rev 2.2
Annabsoks®

249 I ConmmmimTi

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL SERIAL MONITOR S X

Ic]
i

Port | COMS - STMicroelectronics STLink Virtual COM Port (COM9) | Baudrate 115200 ™ | Lineending | None Nl [stop Monitoring I3
LiiLiGifLing Dins Ciiiic

DN5 address 1: 192.168.1.1

DNS address 2: 8.8.8.8
SUCCESS: DNS client initialized

Initializing SNTP time sync

SNTP server @.pool.ntp.org

SNTP time update: Jul 28, 2022 2:26:58.383 UTC
SUCCESS: SNTP initialized

Initializing Azure IoT DPS client
DPS endpoint: global.szure-devices-provisioning.net
DP5S ID scope: @ne@@6DEBCE
Registration ID: mystm32

SUCCESS: Azure IoT DPS client initialized

Initializing Azure IoT Hub client
Hub hestname: iotc-12a55b58-481c-4eed-a3b5-ab@l1lbad366b.azure-devices.net
Device id: mystm32
Model id: dtmi:azurertos:devkit:gsgstmlds5;2

SUCCESS: Connected to IoT Hub

Receive properties: {"desired":{"$version":1},"reported”:{"devicelnformation™:{"__t":
Sending property: $iothub/twin/PATCH/properties/reported/?$rid=3{"deviceInformation"”:
Sending property: $iothub/twin/PATCH/properties/reported/?$rid=5{"led5tate":false}
Sending property: $iothub/twin/PATCH/properties/reported/?$rid=7{"telemetryInterval™:{"ac":2080,"av":1,"value":18}}
---- Closed the serial port COM3 ----

---- Opened the serial port COM3 ----

Telemetry message sent: {"accelerometerX":-18,"accelerometeryY":-26,"accelerometerZ”:1019}.

Telemetry message sent: {"gyroscopeX":185@,"gyroscope¥Y":-1330,"gyroscopeZ™:-1128}.

---- Closed the serial port COMS ----

---- Opened the serial port COM9 ----

", "manufacturer”: "STMicroelectronics™,"model": "B-L455I-I0T@1A", s
£":"c", "manufacturer”: "STMicroelectronics™, "model": "B-L4551-10T

Type in a message to send to the serial port, Send Message
@ Build & [arm-gec-cortex-md] [[Targets In Preset]] ¥ [38 No Test Preset Selected Ln236,Col 1 Spaces:4 UTF-8 LF C Wink2 & £

18. Hit Shift+F5 to stop debugging.

3 Conclusion

Sample projects are good starting points to get familiar with the software. The ability to step through
the code and see the API calls in operation provides good insight when documentation is lacking.
The paper here covered debugging with Visual Studio Code, but further development should be
using the STM32Cube Integrated Development Environment that provides a richer development
experience and direct support for all the STM32 MCU family..

References

More information on the Azure loT SDKs can be found here.

Introduction to THREADX - stm32mcu

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://www.st.com/en/development-tools/stm32cubeide.html
https://docs.microsoft.com/en-us/azure/iot-develop/about-iot-sdks?WT.mc_id=IoT-MVP-5489
https://wiki.st.com/stm32mcu/wiki/Introduction_to_THREADX

