Rev 2.2
nnabgoks:

‘mm mn sl

Azure RTOS and Microchip ATSAME54-XPro Evaluation kit

By Sean D. Liming and John R. Malin
Annabooks — www.annabooks.com

May 2023

There are a number of Azure RTOS online guides to get started with different platforms. The
ATSAMES54-XPRO is one of the first platforms that demonstrated connecting to Azure IoT Central.
If you follow the quick start online documents, you will be able to build the example application from
the command line and get it to run. If you want to use the example application as a basis for a
project, being able to debug by stepping through the code is going to be important. In this paper,
we will walk through the example but set up the development environment to use Visual Studio
Code.

Target Hardware: SAM E54 XPLAINED PRO EVALUATION KIT (ATSAMES54-XPRO).

1 Tools Setup

For this setup we will need to download and install a few items.

1. Download and install Visual Studio Code: Visual Studio Code - Code Editing 1.69.2.
2. Once Visual Studio Code has been installed, install the following add-ons from the Visual
Studio Code marketplace:

C/C++ - Visual Studio Marketplace

CMake Tools - Visual Studio Marketplace
CMake - Visual Studio Marketplace
Cortex-Debug - Visual Studio Marketplace
Embedded Tools - Visual Studio Marketplace

3. Install Git so we can download the Azure RTOS to get started building the files: Git -
Downloads (git-scm.com).

Accept the license, and click Next.

Leave the install location as is, and click Next.

Leave the Selected Components as they are, and click Next.

Keep the State Menu Folder as is, and click Next.

Set the default editor selection to be “Use Visual Studio Code as Git's default

editor”, and click Next.

®Poo0TO

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

http://www.annabooks.com/
https://learn.microsoft.com/en-us/azure/iot-develop/quickstart-devkit-microchip-atsame54-xpro?pivots=iot-toolset-cmake
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools
https://marketplace.visualstudio.com/items?itemName=twxs.cmake
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-embedded-tools
https://git-scm.com/downloads
https://git-scm.com/downloads

Rev 2.2
Annabgooks®

€ Git2.37.1 Setup

Choosing the default editor used by Git
Which editor would you like Git to use?

Use Visual Studio Code as Git's default editor ~

Visual Studio Code is an Open Source, lightweight and powerful editor

running as a desktop application. It comes with built-in support for JavaScript,
TypeScript and Mode. js and has a rich ecosystem of extensions for other
languages (such as C++, C#, Java, Python, PHP, Go) and runtimes (such as
.MET and Unity).

(WARNING!) This will be installed only for this user.

Use this option to let Git use Visual Studio Code as its default editor.

Keep the default for initial branches, and click Next.

Keep the default PATH Environment, and click Next.

Keep the default OpenSSH selection, and click Next.

Select “Use Windows’ default console window”, and click Next.

Q-

€ Git2.37.1 Setup

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

(_) Use MinTTY (the default terminal of M5YS2)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-ectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty” to work in MinTTY.

(® Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe™), which works well
with Win32 console programs such as interactive Python or node. js, but has a
wery limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

[Jonly show new options Back Cancel

Keep the defaults for the next question, and click Next.

Keep the defaults for the next question, and click Next.

Keep the defaults for the next question, and click Next.

Keep the defaults for the extra options, and click Next.

Keep the defaults for the experimental options, and click Install.
Click Finish once the install completes.

°o3 3~ mT

4. Download and install a serial terminal program such as HyperTerminal, PuTTY, or
Annabooks COM Terminal.
5. Reboot the computer.

2 Visual Studio Code Sample Application

This section covers the sample Azure RTOS getting-started sample but uses Visual Studio Code
to implement the sample.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://www.annabooks.com/SW_ABCOMTerm.html

Rev 2.2
Annabgooks®

2.1 Download the Getting Started Files from GitHub

We need to get the getting-started repository that contains the Azure RTOS build example and the
ports to the ATSAMES54-XPRO and other development kits.

1. Create a directory called \Azure-RTOS-Microchip-E54
2. Open PowerShell.
3. Change the directory to the newly created folder:
cd \Azure-RTOS-Microchip-E54
4. Run the following

git clone --recursive https://github.com/azure-rtos/getting-started.git

Jpdating fil
5 odul

oning into 'E:

2.2 Create Azure IoT Central Application

Now, we need to set up the application on Azure loT Central.

In a browser, open https://apps.azureiotcentral.com/home
Sign into the account or create an account.

Click on Build App.

In the Custom app tile, click Create app.

son =

Application Name: MCHP-E54-getting-started
Pricing Plan: Free

5. Click Create.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://apps.azureiotcentral.com/home

Rev 2.2
Annabgoks®

%) Azure loT Central

Build > New application

@ Home New application Custom
I 1 Build Answer a few quick guestions and we'll get your app up and running.
HE My apps About your app

Application name * (D

‘ MCHP-E54-getting-started

URL* (D
‘ mchp-e54-getting-started .azureiotcentral.com
Application template * () v
‘ Custom application 4
. P
Pricing plan
N
@ Free
Try for 7 days with no commitment
5 free devices s
P
() Standard 0 K
For devices sending a few messages per day "
2 free devices 400 messages/mo
S
(O standard 1 v,

For devices sending a few messages per hour ir

2 free devices 5,000 messages/mo

(O standard 2 (most popular)

For devices sending messages every few minutes

2 free devices 30,000 messages/mo

By clicking "Create” you agree to the Subscription Agreement = and Privacy Statement =, Provisions in the
agreement with respect to pricing, cancellation fees, payment, and data retention do not apply to "Free".
“Standard" plans require an Azure subscription, and you acknowledge that this service is licensed to you under

the terms applicable to your Azure Subscription =,

6. Now, we need to add a device to the application, and click on the +New button that is above
the All Devices section.
7. Enter the following:
a. Device Name: myMCHPES4
b. Device ID mymmymchpe54chpe54
8. Click Create.
9. The device will be created and listed under all devices

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

ﬁ.'!.'!achks - Rev 2.2

Devices < 1 Import @ Y Q

= All devices

All devices

Device explorer helps you see all your devices, Detailed information like device raw data helps you troubleshoot. Learn more

Device name Device ID Device status Device template Organization Simulated

myMCHPES4 mymchpe54 Registered Unassigned MCHP-ES4-getting-started No

10. Click on myMCHPES4. This will be the view of the data coming in.
11. Click on Connect at the top of the bar.

Manage template ~ (& Manage device

Devices » myMCHPE54

myMCHPES54

| Last data received: N/A | Status: Registered | Organization: MCHP-E54-getting-started

=

Raw data Mapped aliases

Timestamp | Message type Event creation time Unmodeled data

No rows found

12. A Device Connections group box appears. Copy the following information and paste it in a
Notepad or Notepad++ temporary document. We will need this information in the next
section.

e ID scope
e Device ID
e Primary Key

13. Close the dialog when finished.

2.3 Building the Getting Started Sample App

With the application created in Azure loT Central and the device information collected to make the
connection, we are ready to build the example.

1. Open File Explorer and change the directory to \Azure-RTOS-MicroChip-E54\getting-
started\Microchip\ATSAME54-XPRO.

2. Double-click on ATSAME54-XPRO.code-workspace to open the workspace in Visual
Studio Code.

3. You will be asked to trust the authors of the code, click Yes.

4. When asked for the toolchain at the top, accept arm-gcc-cortex-m4.

5. Under ATSAME54-XPRO\App, open Azure_config.h and fill in the information gathered
from the Azure loT Central application, as well as, your Wi-Fi connection settings:

Constant name Value
I0T_DPS ID_SCOPE ID scope value
IOT_DPS REGISTRATION ID Device ID value
IOT_DEVICE_SAS KEY Primary key value

6. Save the file.
Copyright © 2023 Annabooks, LLC. All rights reserved

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2
Annabgooks®

7. At the bottom click on Build. It will take a few minutes, but the build should complete
successfully.

S OUTPUT DEBUGCONSOLE TERMINAL CMake/Build vESL ~ X

[build] [1261/125] Linking C static library lib\netxduo\addons\azure_iot\azure_iot_security_module\iot-security-module-core\libasc_security_core.a
[build] [1262/1205] Linking C static library lib\netxduo\addons\azure_iot\azure_iot_security_module\libiot_security_module.a
[

[build] [1203/125] Linking C static library lib\netxduo\libnetxduo.a
[build] [1204/1205] Linking C executable app\michip azure_iot.elf
[build] Memory region Used Size Region Size %age Used
[build] RAM 119328 B 128 KB 91.04%
[build] FLASH: 625524 B 18 59.65%
[build] CCHRAM: (X 64 KB 0.00%

[build] [1205/1205] emd.exe /C "cd /D E:\Azure-RTOS-MXCHIP\getting-started\MXChip\AZ3166\build\app & "C:\Program Files (x86)\GNU Arm Embedded Toolchain\1@ 2021.18\bin\arm-none-eabi-objcopy.exe”
-Obinary mxchip_azure_iot.elf mxchip_azure_iot.bin && "C:\Program Files (x86)\GNU Arm Embedded Toolchain\1@ 2021.1@\bin\arm-none-eabi-objcopy.exe” -Oihex mxchip_azure_iot.elf mxchip_azure_iot.hex"
[build] Build finished with exit code @

Build 3% [arm-gcc-cortex-md] [Targets InPresed]] £} D> 38 No Test Preset Selected Ln36,Col80 Spaces:4 UTF-8 LF € Win22 &

2.4 Program the ATSAMES54-XPRO Board

With the atsame54_azure_iot.bin built, programming the board is a simple copy and paste.

1. Make sure the board is connected to the development machine.
2. Open Microchip Command Prompt.
3. Change directory to \Azure-RTOS-MicroChip-E54\getting-started\Microchip\ATSAME54-

XPRO\build\app.
Marmne h Date modified Type Size
CMakeFiles 8/11/2022 4:14 PM File folder
| | atsame34_azure_iot.bin 8/11/2022 4:46 PM BIM File 375 KB
| | atsame34_azure_iot.elf 8/11/2022 4:46 PM ELF File 7,606 KB
| | atsame34_azure_jot.hex 8/11/2022 4:46 PM HEX File 1,054 KB
cmake_install.cmake 21172022 414 PM CMake Source File 2 KB

4. Run the following

atprogram --tool edbg --interface SWD --device ATSAMES54P20A program --chiperase --file
atsame54_azure_iot.bin --verify

5. If asked to allow the application to go through the firewall, click Allow. Wait for the message
that programming and verification have completed successfully before going to the next
step.

6. Open a serial terminal program and connect to the COM port and set the baud rate to
115200 and enable Flow Control DTR/DSR (hardware).

7. Hit the reset button on the ATSAMES54-XPRO.

If all goes well, you will see the terminal output with something similar to the following:

Starting Azure thread

Initializing DHCP
MAC: FC:C2:3D:23:58:4B
IP address: 192.168.1.239
Mask: 255.255.255.0
Gateway: 192.168.1.1
SUCCESS: DHCP initialized

Initializing DNS client

DNS address: 192.168.1.1
SUCCESS: DNS client initialized
Copyright © 2023 Annabooks, LLC. All rights reserved

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabgcoks®

Initializing SNTP time sync

SNTP server @.pool.ntp.org

SNTP time update: Aud 12, 2022 0:23:12.543 UTC
SUCCESS: SNTP initialized

Initializing Azure IoT DPS client
DPS endpoint: global.azure-devices-provisioning.net
DPS ID scope: One@0706F71
Registration ID: mymchpe54

SUCCESS: Azure IoT DPS client initialized

Initializing Azure IoT Hub client

Hub hostname: iotc-c131322c-97ad-4083-86e6-3a9776985ell.azure-devices.ne
t

Device id: mymchpe54

Model id: dtmi:azurertos:devkit:gsg;2
SUCCESS: Connected to IoT Hub

Receive properties: {"desired":{"$version":1},"reported":{"deviceInformation":{"
__t":"c","manufacturer"”:"Microchip", "model" : "ATSAME54-XPRO", "swVersion":"1.0.0",
"osName":"Azure RTOS","processorArchitecture":"Arm Cortex M4","processorManufact
urer”:"Microchip", "totalStorage":1024, "totalMemory":256}, "ledState":false, "telem
etryInterval”:{"ac":200,"av":1,"value":10}, "$version":27}}

Sending property: $iothub/twin/PATCH/properties/reported/?$rid=3{"deviceInformat

nm,u_un on

ion":{"_t":"c","manufacturer":"Microchip"”, "model":"ATSAME54-XPRO", "swVersion":"

non

1.0.0","osName":"Azure RTOS","processorArchitecture":"Arm Cortex M4","processorM
anufacturer":"Microchip","totalStorage":1024,"totalMemory" :256}}

Sending property: $iothub/twin/PATCH/properties/reported/?$rid=5{"ledState":fals
e}

Sending property: $iothub/twin/PATCH/properties/reported/?$rid=7{"telemetryInter
val":{"ac":200,"av":1,"value":10}}

Starting Main loop

8. In Azure loT Central, refresh the browser to see the myMCHPES4 device. Since there is

no weather station hardware connected, there is no data.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2
Annabgoks®

Devices »» Getting Started Guide > myMCHPE54

myMCHPE54

© Connected | Last data received: 8/11/2022, 5:15:22 PM | Status: Provisioned | Organization: MCHP-E54-getting-started

=

About Overview Command Rawdata Mapped aliases

Temperature Va Temperature

® Temperature

0.024 No data found

Check your device or network

connection, and make sure y
0.0+ ——— part of the device's org.

-0.024

T T T
04:45 PM 05:00 PM 05:15 PM
08/11/2022 08/11/2022

9. Click on Command.

10. Set the State to False.

11. Click Run, and the LED on the board will turn off.
12. Set the State to True.

13. Click Run, and the LED on the board will turn on.

Devices » Getting Started Guide > myMCHPE54

myMCHPE54

@ Connected | Last data received: 8/11/2022, 5:16:12 PM | Status: Provisioned | Organization: MCHP-E54-getting-started

=

About Overview Command Rawdata Mapped aliases

Getting Started Guide / Set LED state (O

State (i)

‘ False

To see response, please check the command history

2.5 Debugging the Application
Now, we will step through the code to see how it works.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2
Annabgooks®

1. In Visual Studio Code, hit F5.

2. The binary will be downloaded and a breakpoint will be hit within main.c.
C main.c X > ¢ ¥ T O 0O~
AZ3166 > app > € main.c > @ main(void)

49 systick_interval_ set(TX_TIMER_TICKS_PER_SECOND);
58
51 // Create Azure thread
52 UINT status = tx_thread_create(&azure_thread,
53 "Azure Thread"”,
54 azure_thread_entry,
55 2,
56 azure_thread_stack,
57 AZURE_THREAD_STACK_SIZE,
58 AZURE_THREAD_PRIORITY,
59 AZURE_THREAD_PRIORITY,
60 TX_NO_TIME_SLICE,
61 TX_AUTO_START };
62
63 if (status != TX_SUCCESS)
64
65 printf("ERROR: Azure IoT thread creation failedirin");
67 1}
68
69 int main(void)
78 [
71 // Initialize the board
D 72 | board_init():
73
74 /{ Enter the ThreadX kernel
75 tx_kernel_enter();
7 return @;
73
79

3. Click Step Over (F10) to move past the board initialization call.

4. Click Step Over (F10) and the application thread will kick off and run.

5. Stop the debugger (Shift+F5).

The files that comprise the core functionality of the application are:

11.
12.

main.c — sets up and runs the thread.

nx_client.c — creates the callback function to send telemetry and handle receive
commands.

Azure_iot_nx_client.c — this file has the main loop client_run(), which connects to Azure
IoT Central and handles communications between the local application and the application
on Azure loT Central.

In main.c, set a breakpoint at line 38, which is the call to azure_iot_nx_client_entry.

Also, in nx_client.c, set another breakpoint at line 147, which is the call to turn the LED on
or off.

Hit F5.

When the breakpoint hits in Main.c, hit F10 twice.

. The debugger will break at line 34. Hit F11 to step into the to azure_iot_nx_client_entry

call.

Hit F5 to allow the code to continue.

The debugger is now in the main loop in Azure_iot_nx_client.c. In Azure loT Central, click
on Command, set the LED State to True, and click Run.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2
Annabgoks®

Devices » Getting Started Guide > myMCHPES4

myMCHPE54

@ Connected | Last data received: 8/12/2022, 11:46:41 AM | Status: Provisioned | Organ

=

About Overview Command Rawdata Mapped aliases

Getting Started Guide / Set LED state (O

State @

‘ False

To see response, please check the command history.

13. A breakpoint should be hit at line 147 in nx_client.c.
14. Hit F5 to continue debugging and the LED should turn on.
15. Change the state of the LED a few times and watch each time the breakpoint is hit.

If you have installed the embedded tools into Visual Studio Code, you will be able to see the
Peripherals and Cortex Registers in the Debug section.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2
Annabgoks®

175
176
~ CALL STACK Paused on step 13?
command_received ch@@x@a888757@ E/Azure-RTOS-Micr. 1:3
process_command@@xeeee31fe E/Azure-RTOS-MicroChip... 1é~'3
client_run@ax@eeeifcc E/Azure-RTOS-MicroChip-ES4/... 121
azure_iot nx_client dps run@@x@eead4ece EfAzure-FR. 182
azure_iot_nx_client_entry@exeeee77ac E/Azure-RTO... 183
Ty o N S S Sy 184
~ BREAKPOINTS 185
® [Mlmainc app 33 126
® M nx clientc app 147 187
~ CORTEX PERIPHERALS 188
2 AC @ 0x42002000 182
1%@
2 ADCO @ 0x43001c00 101
2 ADC1 @ 0x43002000 107
2 AES @ 0x42002400 1493
2 CANO @ Ox42000000 194
- CORTEXREGISTERS PRI
roo un
r -1 Un

r2 0
r3 0 Br
rd 29949 me
- ed
* PERIPHERAL VIEW 3
Waiting for register data from debugger... p_

X ®0A0 £ Microchip: Local OpenOCD (ATSAMES4-XPRO) (© CMake: [Debug]:

16. Hit Shift+F5 to stop debugging.

3 Conclusion

Sample projects are good starting points to get familiar with the software. The ability to step through
the code and see the API calls during operation provides good insight when documentation is
lacking. The paper here covered debugging with Visual Studio Code, but further development
should be done using the Microchip MPLAB tools that provide a richer development experience
and direct processor support.

Copyright © 2023 Annabooks, LLC. All rights reserved

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 2.2

Annabgoks®

References
More information on the Azure IoT SDKs can be found here.

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Copyright © 2023 Annabooks, LLC. All rights reserved
Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://docs.microsoft.com/en-us/azure/iot-develop/about-iot-sdks?WT.mc_id=IoT-MVP-5489

