Version 1.3
Annabgsoks-

Windows® 10 IoT Core Native Remote Debugging
By Sean D. Liming and John R. Malin
Annabooks — www.annabooks.com

November 2016

Two application types are support in Windows 10 IoT Core: Universal Windows Platform (UW P)
and native console applications C/C++. Remote debug support (VSGraphicsRemoteEngine.exe)
for UWP is part of the core OS. Native Remote Debugging for C/C++ applications is not included
since Visual Studio and Windows 10 will update at different intervals. In this paper, we will
explore how to add native remote debugging, system setup for remote debugging, and a few
items to help with native code development.

Deploy the Remote Debug Files

The remote debug tools come with the installation of Visual Studio 2015 and higher. Make sure
you include Phone development during the installation. Windows 10 supports different processor
architectures, ARM and Intel Architecture (x86 and x64). The binaries are found at this path:

C:\Program Files (x86)\Common Files\Microsoft Shared\Phone Tools\14.0\Debugger\target
With separate folders for the supported processor architectures:

o v 1 > ThisPC > Local Disk (C:) > Program Files (x86) > Common Files » Microsoft Shared > PhoneTools > 14.0 > Debugger > target
Name Date medified Type Size
s Quick access

File folder

armvdi 9/12
& OneDrive lib 9/12
x64
x86

v @ This PC
I Desktop

Figure 1 - Different Binaries for Processor Architecture

Only use the binaries that go with your target’s processor architecture.

Note: if Unified Write Filter (UWF) is available in the image, make sure UWF is disabled. You can
check if UWF is enabled, by running UWFMGR get-config from a remote PowerShell session. If
UWF is enabled, disable UWF and reboot the target.

Here are the steps for putting the binaries on your target platform:

Make sure your target and host development system are on the same network.

Boot the target system to Windows 10 loT Core.

On the host system, start the l1oT Dashboard application.

In the My Devices section, right click on your target's IP address, and select Open
Network Share from the context menu.

PowbdPE

|oT Dashboard - [m] X

[E? My devices My dEViCeS
]H Set up a new device

¢ Connect to Azure

minwinpc Minnowboard SRR R atel] R &3 10.0.14393.0
Open in Device Portal

Try some samples
Launch PowerShell
| Open network share |
Copy IP address
Copy device name

Send feedback

Copyright © 2016 Annabooks, LLC. All rights reserved

http://www.annabooks.com/

Annabgoks-

Version 1.3

Figure 2 - Opening Network Share

5. Enter the credentials to access the remote target, and a file explorer window appears

showing the remote target’s C drive.
6. In the file explorer window, create a folder called RDBG.
7. Copy all the debug files for the target’s processor architecture to the \RDBG folder on the

target.
&« v A > Network » 1921681103 » <5 » RDBG
MName Date modified Type Size
Quick access
1033 11/10/2016 219 PM File folder
@ OneDrive [] AsyncCollectionAgent.dl 7/26/2016 10:23 PM Application extens... 65 KB
3 Thic pc |_] dbgshim.dll f27/2016 6:51 PM Application extens... 135 KB
|J DiagnesticsHub.CollectorBridge.dll 6/2016 10:23 PM Application extens... 154 KB
== AB1TB (E:) [] DiagnosticsRemoteHelper.dil 7/26/2016 10:23 PM Application extens... 186 KB
AB2TA (D) |J DiagnosticsTap.dll 7/26/2016 10:23 PM Application extens... 443 KB
= I |J GpuProfilingCollectionAgent.dil 6/20/2016 1:51 PM Application extens... 68 KB
= ABSDOME (F) |J msdbg2.dil T/26/2016 10:23 PM Application extens... 152 KB
= Network |_'| MSDIA140.dII 6/10/2016 7:22 AM Application extens... 1,175 KB
orl ;
%] MSVCP140.dIl B/10/2016 7:22 AM Application extens... 589 KB
4 Homegroup [msvsmon.exe 7/26/2016 10:23 PM Application 1,845 KB
|_1 msvsmon.exe.config 26/2016 10:05 PM CONFIG File 2 KB
|_'| pdm.dll 7/26/2016 10:23 PM Application extens... 5347 KB
|_'| pdmproxy100.dI1 f26/2016 10:23 PM Application extens... 102 KB
|_] pdmproxy140.dll 6/2016 10:23 PM Application extens... 3 KB
|_] VCRuntime140.dll 6/10/2016 7:22 AM Application extens... TR KB
|_] vsdebugeng.dll T/26/2016 10:23 PM Application extens... 2,547 KB
|_] vsdebugeng.impl.dil 7/26/2016 10:23 PM Application extens... 2,484 KB
|_] vsdebugeng.script.dil 6/2016 10:23 PM Application extens... 355 KB
[] V5DebuglaunchMotify.exe 7/26/2016 10:23 PM Application 32KB
|J VSDebugScriptAgent140.dil 7/26/2016 10:23 PM Application extens... 157 KB
|J VeEtwService.dll 7/26/2016 10:23 PM Application extens... T2KB
|J VSGraphicsCaptureEngine.dil 7/26/2016 10:23 PM Application extens... 114 KB

Figure 3 - New RDBG Folder and Remote Debug Files

Msvsmon.exe should be in the root of \RDBG folder.

Configuring the Firewall and Starting the Debugger
The firewall is enabled by default, thus the next step is to configure the firewall. Msvsmon.exe is
the remote debug utility. You can configure the firewall via PowerShell remoting.

1. From the loT Dashboard, right click on the target’s IP address and select Launch Power
Shell.

2. A PowerShell window opens, and you will have to enter the target’s credentials again.

3. There are two options to configure the firewall.The first is to create a rule that allows
msvsmon.exe to allow communications to come through the firewall:

netsh advfirewall firewall add rule name="Remote Debug" dir=in action=allow

program="C:\RDBG\msvsmon.exe" enable=yes

Copyright © 2016 Annabooks, LLC. All rights reserved

ﬁ__nnabGOkS 3 Version 1.3

The second option is just to disable the firewall:

netsh advfirewall set allprofiles state off

4. Enter either of these in the PowerShell window and hit enter. You might want to create a
.cmd file with either command if you ever have to run the remote debugger in a new
image.

The next step is to start the debug session

5. Inthe PowerShell window, change directory to the \RDBG folder.
6. Enter the following to start the debugger:

msvsmon.exe /nowowwarn /noauth /anyuser /nosecuritywarn /timeout:36000

You might want to create a .cmd file with the command if you ever have to rerun the remote
debug. The .cmd file would be best placed in the \RDBG folder.

7. You can see the debugger running in the target image, in 10T Dashboard, right click on
your target’s IP address and select Open in Device Portal.

8. An Internet Explorer or EDGE window will open. You will have to enter the credentials for
the target.

9. Inthe Device Portal, click on Processes. You should see msvsmon.exe running.

. I 7 2:43 PM
Runnlng Processes Pu(-vaer FeeEack Hélp 11/10/2016
~ a4 awm.exe WINQOW Managenuwiv-u u UUU% 95 B

UTILITIES / X 688 svchostexe NT AUTHORITYANETWO... 0 0.00% 2.1 MB
X 748 svchost.exe NT AUTHORITYA\LOCAL S... 0 0.00% 54MB
X 832 svchost.exe NT AUTHORITY\SYSTEM 0 0.00% 11.1 MB

< Tr— X 860 svchost.exe NT AUTHORITY\SYSTEM 0 0.00% 5.0MB
X 916 svchost.exe NT AUTHORITYA\LOCAL S... 0 0.00% 54MB
X 924 WUDFHost.exe NT AUTHORITYA\LOCAL S... 0 0.00% 1.0 MB
X 980 svchost.exe NT AUTHORITY\LOCALS... 0 0.00% 3.8 MB
X 1036 svchost.exe NT AUTHORITY\LOCALS... 0 0.00% 1.1 MB
X 1116 svchost.exe NT AUTHORITY\LOCALS... 0 0.00% 1.3 MB
X 1452 svchost.exe NT AUTHORITY\SYSTEM 0 0.00% 936.0 KE
X 1508 svchost.exe NT AUTHORITY\SYSTEM 0 0.00% 3.0 MB
X 1516 svchost.exe NT AUTHORITY\SYSTEM 0 0.00% 2.1 MB
X 1524 svchost.exe NT AUTHORITY\SYSTEM 0 0.00% 3.5 MB
X 1604 svchost.exe NT AUTHORITYASYSTEM 0 0.00% 808.0 KE
X 1632 WebManagement.exe NT AUTHORITY\SYSTEM 0 0.73% 2.9 MB
X 1664 ebootpinger.exe NT AUTHORITY\SYSTEM 0 0.00% 452.0 KE
X 2160 Searchindexer.exe NT AUTHORITY\SYSTEM 0 0.00% 5.2 MB
x 2260 sihost.exe MINWINPC\DefaultAcco... 0 0.00% 2.4 MB
X 2408 loTShell.exe MINWINPC\DefaultAcco... 0 0.00% 5.1 MB
X 2612 RuntimeBroker.exe MINWINPC\DefaultAcco... 0 0.00% 2.4 MB
X 2692 msvsmon.exe MINWINPC\Administrator 0 0.00% 760.0 KE
X 2732 loTCoreDefaultApp.exe MINWINPC\DefaultAcco... 0 0.00% 11.1 MB
X 2828 wsmprovhost.exe MINWINPC\Administrator 0 0.00% 29.9 MB
x 3036 cmd.exe MINWINPC\Administrator 0 0.00% 408.0 KE
X 3064 msvsmaon.exe MINWINPC\Administrator 0 0.00% 704.0 KE.

Figure 4 - Running Processes

The system is ready for a native remote debug session.

Copyright © 2016 Annabooks, LLC. All rights reserved

Version 1.3
Annabgsoks-

Visual Studio Project Settings

Make sure that you have installed the 10T Core project Templates. The templates add the options
to create Windows loT Core applications. For C++ applications, there are three project types. The
Blank Windows IoT Core Console Application creates a simple Hello World application that you
can edit to create your own console application.

New Project ? X
b Recent NET Framework 4.5 ~ | Sort by: Default v| SR Search Installed Templates (Ctrl+E) P~
4 |Installed ¥ <
| I Background Application (loT) Visual C++ Type: Visual C++
4 Templates = A project for creating a Win32 console
. ++ icati Ni
b Visual C2 a Blank Windows loT Core Console Application Visual C++ application for Windows loT Core
b Visual Basic
< 4
Visual F# | I Arduino Wiring Application for Windows loT Core Visual C++
<@

4 Visual C++
b Windows Driver
4 Windows
Universal
Windows loT Core
ATL
CLR
General
MFC

Figure 5 - Creating Console Application

The final step is to configure the C/C++ project debug settings in Visual Studio:

With your project open in Visual Studio, select Project-><Project name> Properties...
Select Debugging under Configuration Properties.

Set the Debugger to Launch: “Remote Windows Debugger”.

For both Active and Debug configurations, fill in the following information:

PwnNPE

Remote Command: c:\<path>\Application name.
Working Directory: c:\<path>.

Remote Server Name: IP address of the target.
Connection: Remote with no authentication.
Debugger Type: Native only.

Deployment Directory: c:\<path>.

Deploy Visual C++ Debug Runtime Libraries: No.

Copyright © 2016 Annabooks, LLC. All rights reserved

coks-

Version 1.3

sysinfo14393 Property Pages

Configuration: Active(Release)

4 Configuration Properties

General
VC++ Directories

b C/C++

b Linker

b Manifest Tool

b XML Document Generator

b Browse Information

b Build Events

b Custom Build Step

b Code Analysis

v Platform: Active(x64)

Debugger to launch:

Remote Windows Debugger

Remote Command

Remote Command Arguments
Working Directory

Remote Server Name
Connection

Debugger Type

Environment

Attach

SQL Debugging

Deployment Directory

c:\deploy\sysinfo14393.exe

c:\deploy

192.168.1.136

Remote with no authentication
Native Only

No
No
c:\deploy

Configuration Manager...

”

X

Additional Files to Deploy
Deploy Visual C++ Debug Runtime Librari No
Amp Default Accelerator WARP software accelerator

Remote Command
The debug command to execute.

Cancel Apply

Figure 6 — Configuring the Project for Remote Debug

5. The final step is to make sure Deploy is enabled. From the menu, Build->Configuration
Manager...
6. Make sure Deploy is checked for both Retail and Debug.

Active sclution configuration: Active solution platform:

Debug | |xbd

Project contexts (check the project configurations to build or deploy):

Platform
x6d ~

Project
sysinfo2016

Configuration

Debug v

Figure 7 - Enabling Deployment

You can now deploy and remotely debug your native application. If your code sends any output to
the console, the output will be displayed in PowerShell

Copyright © 2016 Annabooks, LLC. All rights reserved

Version 1.3

Annabgooks-

ick Launch (Ctrl+Q) P - B x

B4 sysinfo2016 (Debugging) - Microsoft Visual Studio. &

File Edit View Project Buld Debug Team Tools Architecture Test Driver Analyze Window Help Sean Liming ~

O E-mEE]9 Q- P Continue ~ | #4 _} mO| |3t 2t mcademp (B R |BALET| =
¥ Process: [352] sysinfo2016.exe - Lifecycle Events ~ Thread: [1316] Main Thread - ¥ Stack Frame: main BE
Sysinfo2016.cpp + X -
%] sysinfo2016 ~| (Global Scope) ~| @ main(int arge, char ™ argy) -
ES
M_IX86 -

_M X6a
getCPUInfo();

#endif

printMessageline("Processor Architecture:”, procarchmsg);

[] printMessageline("Processor Type", proctype);
printMessageline("Number of Processors™, numproc);
=3 | printMessageline("Processor Revision”, procrev);

printMessageLine("Processor Level®, proclevel);

RYSTATUSEX statex;
ex.dwlength = sizeof(statex);

BOOL success = GlobalMemoryStatusEx(&statex);
= if (lsuccess)

100 % -

Autos ~ 4 X || Output - B
Name Value Type Show output from: Debug ~J[FE [E|za
@

@ stduoperator<<<st 3] stdsibasit sysinFo2@16.exe’ (Win32): Loaded 'C:\deploy\sysinfo2016.exe’. Symbols loadel .
€ @ stdroperator< < <stdict {.} std::basis ‘sysinfo2@16.exe’ (Win32): Loaded ' lindows\System32\ntdl1.d11". Cannot it
@ numproc 2 unsignes *sysinfo2@16.exe’ (Win32): Loaded 'C:\Windows\System32\KernelBase.dll'. Cannc
b @ procarchmsg Bx0D0DTF77cTa3300 "x64" Q - constch *sysinfo2@16.exe’ (Win32): Loaded 'C:\Windows\System32\ucrtbase.dll'. Cannot
@ proctype 8664 unsigner *sysinfozel6.exe’ (Win32): Loaded 'C:\Windows\System32\msvcpl48.d1l’. Cannot
*sysinfo2@16.exe’ (Win32): Loaded 'C:\Windows\System32\vcruntime14@.dll’. Car
'sysinfo2@16.exe’ (Win32): Loaded 'C:\Windows\System32\forwarders\kernel32.d
4 »
[T Locals Watch 1 Call Stack Breakpoints Exception Settings Command Windew Immediate Window [
Ready Ln 142 Col 1 Ch1 INS 4 Publish «
E¥ Administrator: Windows PowerShell - m] x

Proce:

r Type
Number

Figure 9 - Application Console Output

Processor Directives

UWP applications are design to run on different processor architectures by simply changing the
target processor in Visual Studio. This allows you to create one program that target’s different
platforms. The same can be done for native applications, but you must address API calls that are
unique to each processor architecture.

Copyright © 2016 Annabooks, LLC. All rights reserved

Version 1.3
Annabgsoks-

The processor directives (_M_IX86, M_X64, and _M_ARM) can be put into your project to select
code that is only for a specific processor architecture. For example, if there is code that will run on
x86 and x64 but not on ARM, you would structure the processor directives as follows:

#ifdef _M_IX86
#elif _M_Xe64

<<< your code here>>>
#endif

If there is code only for ARM, you would structure the processor ARM directive as follows:
#ifdef _M_ARM

<<< your code here>>>
#endif

When you select the target processor architecture, the code with the other processor directives
will be greyed out.

Summary: Going Native

There are many programming options available for IoT Core, and for the many hardcore C/C++
developers, C/C++ is not going away any time soon. The ability to remote debug native
applications allows those familiar with programming in C/C++ the ability to create solutions using
loT Core.

Windows is registered trademarks of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Copyright © 2016 Annabooks, LLC. All rights reserved

