

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

1

Nios® II + UART Project on Intel® MAX® 10-10M08 Evaluation Kit
By Sean D. Liming and John R. Malin
Annabooks, LLC. – www.annabooks.com

December 2022

This hands-on article will walk through the creation of a couple of Nios II + UART designs. We will
explore some tool features along the way.

Please, see the article Intel® Quartus® Prime Lite and Nios® II SBT for Eclipse Installation
Instructions on Annabooks.com for information on how to install the software needed for this hands-
on exercise.

The Project Requirements:

• Intel Quartus Prime Lite Edition V21.0 and Nios® II SBT for Eclipse are already installed.

• Intel® MAX® 10 - 10M08 Evaluation Kit and the schematic for the evaluation board are
required. The schematic PDF file can be downloaded from the Intel FPGA website.

• Intel FPGA Programming cable – USB Blaster II or EthernetBlaster II. The Intel® MAX®
10 - 10M08 Evaluation Kit doesn’t have a built-in USB Blaster II onboard.

• SchmartBoard RS-232 to UART board: RS-232 I/O Module | Schmartboard. An RS-232
transceiver chip is needed to convert the RX and TX digital signals to the expected RS-
232 signals.

• Serial null modem cable.

• RS-232-to-USB adapter.

• A terminal program such as ABCOMTerm (www.annabooks.com), HyperTerminal, or Tera
Term.

• Optional: SparkFun 16 x 2 matrix Serial LCD with Serial Interface. SparkFun has a few of
these LCD displays that support Serial, I2C, and SPI interfaces: SparkFun 16x2 SerLCD –
RGB Text (Qwiic) – LCD-16397 – SparkFun Electronics

• Intel® Quartus® Prime Lite and NIOS® II SBT for Eclipse Installation Instructions on
Annabooks.com.

Note: There are equivalent MAX 10 development and evaluation boards available. These boards
can also be used as the target, but you will have to adjust to the available features on the board.
Please, make sure that you have the board’s schematic files as these will be needed to identify
pins.

1.1 Simple Nios II UART Project

For this design, an application will run on the Nios II processor to send communications back and
forth over a serial cable. There are two parts to the design process: the first involves creating the
hardware design in Quartus Prime and Platform Builder, and the second step is to create the
application with Eclipse.

1.1.1 Create the Project
The first step is to create the design project.

1. Open Quartus.
2. Click on the New Project Wizard.

http://www.annabooks.com/
https://www.annabooks.com/Articles/Articles_FPGA/Intel-FPGA-Tools-Setup-Rev1.1.pdf
https://www.annabooks.com/Articles/Articles_FPGA/Intel-FPGA-Tools-Setup-Rev1.1.pdf
https://schmartboard.com/schmartboard-rs-232-module-710-0001-01/
http://www.annabooks.com/
https://www.sparkfun.com/products/16397
https://www.sparkfun.com/products/16397

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

2

3. Click Next to the Introduction dialog.
4. Select or create a project directory \NIOS2_UART (Do not use the Quartus installation

directory) and name of the project: “NIOS2uart”. Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project
directory is a separate path from the Quartus installation files. Also, there can be no spaces in the
names of the folders or projects.

5. Project Type: Empty project, click Next.
6. Add File: no files to add, click Next.
7. Family, Device & Board Settings: click the Board tab and select: MAX 10 FPGA 10M08

Evaluation Kit. Click Next.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

3

8. EDA Tools: click Next.
9. Summary: click Finish.

Note: The actual MAX 10 on our board is the 10M08SAE144C8G, thus it is not an Engineering
Sample (ES). The next two steps change the device to the production device. Your experience
might be different. These next two optional steps change the device.

10. In the Project Navigator pane on the left, right-click on 10: 10M08SAE144C8GE, and select
Device from the context menu.

11. In the Available devices, scroll down and select the 10M08SAE144C8G. Click OK.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

4

1.1.2 Create the Design Step 1: Platform Designer
Now, we will create the platform in Platform Designer.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon
from the toolbar.

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform
Designer makes it easy to add IP blocks and make interconnections between the blocks.

2. The top-left pane contains the IP Catalog with all the available IP blocks that come with
Quartus Prime. In the search box, type Nios.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

5

3. Expand the Processors and Peripherals and Embedded Processors branches and double-
click on the Nios II Processor

4. This will open the Nios II Configuration page. The first tab is used to select the type of core:
Nios II/e or Nios II/f. We will keep the defaults for now. Click Finish.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

6

5. Now let’s add the RAM IP block. In the IP Catalog enter RAM in the search box.
6. Double-click on On-chip Memory (RAM or ROM) in the Intel FPGA IP.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

7

7. The configuration page will appear. Change the Total memory size to 16384. We need
more memory to run the applications.

8. Uncheck the box for “Initialize memory content”, and click Finish.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

8

9. In the IP Catalog search, enter timer.
10. Double-click on the Interval Timer Intel FPGA IP.

11. Keep the settings as they are and click Finish.
12. In the IP Catalog search, enter UART.
13. Double-click on the UART (RS-232 Serial Port) Intel FPGA IP16550 Compatible UART

Intel FPGA IP.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

9

You will notice that there are two Serial port IPs.16550 Compatible UART Intel FPGA IP and UART
(RS-232 Serial Port) Intel FPGA IP. The former contains support for a full FIFO and DMA transfer.
The latter that we chose for this design doesn’t have a buffer and is a very simplistic character
reader. Since the MAX 10 10M08 Evaluation Kit board is limited to internal RAM blocks, the UART
(RS-232 Serial Port) Intel FPGA IP makes practical sense to use. The challenge is with the
documentation. If you check the details online for the UART (RS-232 Serial Port) Intel FPGA IP,
you will see the name 16550 Compatible UART Intel FPGA IP, which is the other serial port IP, but
all the information is for the UART (RS-232 Serial Port) Intel FPGA IP. There is an entire paper
from Intel talking about the 16550 Compatible UART Intel FPGA IP – ID: 683130 Embedded
peripherals IP User Guide. The dual information can get a little confusing.

14. A configuration page will appear. The default settings of 115200-8-N-1 are fine for this
project. No changes need to be made. Click Finish.

15. In the IP Catalog search, enter the system ID.
16. Double-click on the System ID Peripheral Intel FPGA IP.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

10

17. A configuration page will appear. No changes need to be made. Click Finish.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

11

18. Now we need to wire the IP blocks together. First, wire all the clk lines together by clicking
on the dots for all five IP blocks.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

12

19. Next, connect all the reset lines together by clicking on the dots for all five IP blocks.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

13

20. The memory lines have to be connected together. The s1 line in the RAM is to be
connected to the nios2_gen_cpu data_master and instruction master lines. Click on the
dots for the RAM s1 line.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

14

21. Connect Uart_0’s s1 line, time_0 s1 line, and sysid_qsys_0’s control_slave to the
nios2_gen2_cpu’s data_master.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

15

22. Connect uart_0’s irq line and timer_0’s irq to nios2_gen2_0 irq.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

16

23. If you scroll to the right, the irq is given a default value.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

17

24. Let’s assign a base address. From the menu, select System->Assign Base Address. This
will remove a number of errors from the message box.

You will see the base and end address values change.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

18

25. Set the reset and exception vector addresses. Double-click on the nios2_gen2_cpu to
open the configuration page.

26. Click on the Vectors tab.
27. Change the Reset vector memory drop-down to onchip_memory2_0.s1.
28. Change the Exception vector memory drop-down to onchip_memory2_0.s1.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

19

29. We need to export the RX and TX lines for uart_0. On the external_connection line, double-
click in the Export column cell and type in uart_0. This will show as pins on the part in the
block diagram.

30. Click on Generate HDL…
31. Keep the defaults and click the Generate button.
32. A dialog will appear asking you to save the design, click Save.
33. Give the name as NIOS2uartCPU.qsys, and click Save.
34. Once the save has been completed, click Close.
35. The generate process kicks off. The process should succeed, click Close.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

20

36. Click Finish to close the design.
37. Quartus then reminds you to add the new design to the project. Click Ok.
38. In the Project Navigator, click on the drop-down and select Files.
39. Right-click on Files and select Add/Remote Files in Project

40. A Settings – NIOS2uart page appears with Files on the left highlighted. Click the three dots

browse button for File name, and navigate to \NIOS2_UART\Nios2uartCPU\synthesis
folder.

41. Click on NIOS2uartCPU.qip file and click open.

42. Click OK to close the Settings- NIOS2uart page. The qip file is added to the Project
navigator list. Underneath are all the Verilog files that were generated by Platform Builder.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

21

1.1.3 Create the Design Step 2: Block Diagram
Technically, you don’t have to create a Block Diagram, but we are going to add external logic to
the CPU block in the next exercise. With the qip file and all the Verilog files added to the project,
let's create the block diagram and complete the design.

1. From the menu, select New->Block Diagram/Schematic File or the icon from the
toolbar. Click Ok.

2. The symbol window appears. Double-click on the symbol window and the symbol dialog
appears.

3. Click on the 3 dots to open the file browser.
4. Browse to \NIOS2_UART\Niops2uartCPU folder and open the NIOS2uartCPU.bsf file.

5. The symbol for the nios2uart appears. Click OK to add the symbol to the schematic.
6. Drag the nios2uart symbol with the mouse to a location on the diagram and then left-click

to drop it in place.
7. Right-click on the nios2uart symbol and select Generate Pins for Symbol Ports.
8. Change the name of the clk_clk pin to clk_50MHz.
9. Change the name of the reset_reset_n to SW1. The SW1 switch on the evaluation kit is

connected to the FPGA DEV_CLRN pin. The circuit for SW1 is logic 1 on startup and logic
0 when pressed. Leave the UART pin names as they are.

10. Save the schematic as NIOS2uart.bdf.
11. In the Project Navigator go to Files, right-click on NIOS2_UART.bdf, and click on the Set

as Top-Level Entity.
12. Save project.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

22

13. In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The
analysis will take some time, and it should eventually succeed. This step helps to diagnose
any errors and finds the Node Names for the pin assignments in the next step.

14. Once the process completes, the pin assignments need to be set. From the menu, select

Assignments->Pin Planner or click on the icon from the toolbar. The analysis that
was just run populated the Node Name list at the bottom of the Pin Planner dialog.

15. Using the board schematic, locate the pins for the SW1 and the 50MHz clock. For the

uart_0 lines, we want to go to one of the 2x20 header connector pins. For this example,
set uart_0_rxd to PIN_57, which is header J8-8, and set uart_0_txd to PIN_58, which is
header J8-6. Set the Location values for all node names. For the MAX 10 – 10M08
Evaluation Board, these values are as follows:

Node Name Location

SW1 PIN_121

Clk_50MHz: PIN_27

altera_reserved_tck PIN_18

altera_reserved_tdi PIN_19

altera_reserved_tdo PIN_20

altera_reserved_tms PIN_16

uart_0_rxd PIN_57

uart_0_txd PIN_58

16. Set the I/O Standard to 3.3V-LVTTL for both pins. You can see from the schematic that the

I/O are all tied to 3.3V.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

23

17. Close the Pin Planner when finished.
18. Save the project.

Note: Quartus can crash unexpectedly, which may be due to the fact that it was written in Java and
is not a native Windows application based on .NET. Therefore, a best practice at this point is to
make a backup of the project folder.

19. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

Start from the context menu, or you can click on the symbol in the toolbar.

The compilation should complete successfully.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

24

1.1.4 Write the uartTerminal Application in Eclipse
Now, we are ready to create an application to run on the Nios II processor. The application will read
a string from a remote terminal and echo the string back to the remote terminal. The Nios II HAL
APIs and BSP drivers will be used to interact with the Nios CPU and UART.

1. In Quartus Prime, from the menu, select Tools->Nios II Software Build Tools for Eclipse.
2. Eclipse will open and ask for the root workspace directory. Set the workspace folder to

something like \Documents\FPGA\Apps, and hit ok. It doesn’t matter what the location of
the workspace is, since the actual applications for the project will exist within the
\NIOS2_UART\software folder.

3. In Eclipse, from the menu, select File->New-> Nios II Application and BSP from Template.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

25

4. The first step is to open the SOPC file that was generated for the hardware design. Click
on the three dots button.

5. Navigate to the \NIOS2_UART folder and open the NIOS2uartCPU.sopcinfo file. The CPU
name will reflect the name we gave the CPU in Platform Builder.

6. Enter the project name: uartTerminal.
7. In the Project Template, select Blank Project.
8. Click Finish.

Two projects will be generated. The uartTerminal_bsp is generated to give you the HAL drivers and
API based on the hardware design. The uartTerminal is the application that will run on the
hardware.

9. We need to edit the BSP to use the small C library. The BSP Editor tool allows you to edit
the settings.bsp file to make specific changes for the target. Right-click on
uartTerminal_bsp and select Nios II->BSP Editor from the context menu.

10. The BSP Editor opens and opens the settings.bsp file automatically. If you were to have
started the BSP Editor from the main menu, you would have to manually navigate to open
the file. You can see this is where the small_c library and reduced drivers are set. The
standard input, output, and error ports to send messages to are already set to uart_0. Tick
the box for enable_small_c_library, and click Generate to make the changes.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

26

11. Click Exit when finished.

The uartTerminal_bsp contains the key files that will be helpful with filling in the code to access the
serial port. System.h contains the definitions that were set up for the UART in Platform Designer.
From the picture below, you can see the communication settings 115200-8-N-1, the memory base
address of 0x5000, and the IRQ number.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

27

Since we are using the small_C_library to conserver storage space, the standard C io calls cannot
be used. Instead, we will be using the Nios II HAL APIs to access the UART. The other header files
are under the drivers\inc folder altera_avalon_uart_*.h. Each file contains the function prototypes
of the commands that will be used in the application.

12. We need to add a main.c file to the project. Right-click on the uartTerminal project, and
select New->File from the context menu.

13. Enter the file name main.c and click Finish.

14. Add the following code to the main.c file:

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

28

1. #include "sys/alt_stdio.h"

2. #include "system.h"

3. #include "altera_avalon_uart.h"

4. #include "altera_avalon_uart_regs.h"

5. #include "altera_avalon_uart_fd.h"

6. #include "priv/alt_busy_sleep.h"

7. #include "sys/alt_sys_wrappers.h"

8.

9. int main()

10. {

11. alt_putstr("Hello from Nios II!\n");

12.

13. char rx_buffer[1];

14. char rx_bufferString[256];

15. int i=0;

16. int x = 0;

17.

18. int fp_uart_0;

19. fp_uart_0 = ALT_OPEN(UART_0_NAME,2);

20.

21. alt_putstr("Enter a string and hit enter\n");

22. alt_putstr("********************************\n");

23. alt_putstr("\n");

24.

25. //Clear buffer

26. for(x = 0; x <= 255; x++){

27. rx_bufferString[x] = 0;

28. }

29.

30.

31. /* Event loop never exits. */

32. while (1){

33.

34. do{

35. ALT_READ(fp_uart_0,rx_buffer, sizeof(rx_buffer));

36. rx_bufferString[i] = rx_buffer[0];

37. i++;

38. }while(rx_buffer[0] != '\n' | (i<=255));

39.

40. i = 0;

41.

42. alt_putstr("You entered\n");

43. ALT_WRITE(fp_uart_0,rx_bufferString, sizeof(rx_bufferString));

44. alt_putstr("\n");

45. alt_putstr("Enter a string and hit enter\n");

46. alt_putstr("********************************\n");

47. alt_putstr("\n");

48.

49. //Clear buffer

50. for(x = 0; x <= 255; x++){

51. rx_bufferString[x] = 0;

52. }

53. }

54.

55. return 0;

56. }

Programming access to the HAL drivers is provided by the HAL API Wrappers. The various driver
header files contain the wrapper APIs such as ALT_OPEN, ALT_WRITE, and ALT_READ that are
used to access the serial port.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

29

Nios II HAL Drivers

Nios II HAL API Wrappers

Application

Lines 1-7 define the header files to use from the uartTerminal_bsp project. The make file defines
the path access to the uartTerminal_bsp project. For some header files, you have to add a deeper
path folder. The alt_stdio.h is the small C replacement for the stdio.h library, which is too big to fit
in the memory the hardware provides. A bigger MAX 10 chip with more RAM blocks would make it
feasible, but the MAX 10 10M08 Evaluation Kit is basic.

Line 13 makes a call to send a string out the standard I/O port, which will be UART_0. Lines 13-16
define the variables and the rx_buffer arrays to store data. Lines 18-19 open the UART_0 for
read/write access (flag = 2). The ALT_OPEN command returns an integer to the UART_0 device
structure.

Lines 21-28 send a message string to the standard I/O port and clear the big receive buffer. The
main part of the program is in Lines 32-53. The HAL UART driver is a single-character input driver.
The application stops at the ALT_READ command and waits to receive a character before
continuing. There is no need to set up an interrupt handler, but you could to handle the receive
interrupts differently. For this project, we will use the driver as is. Only 16 bits of data are read in at
a time. The do-while loop will store each character received and store it in a larger buffer. When
the line feed character (\n) is received or the buffer is full (i >=255) it ends the loop.

Once the line feed character has been reached, the do-while loop is exited, and the rest of the
program runs to complete the while-loop. The message is then transmitted back out using the
ALT_WRITE command, another message is sent to the user, and the re_bufferString is cleared.

15. Save the file.
16. Right-click on uartTerminal project again, and select Build Project. The build should

complete successfully, and the uartTerminal.elf file has been created.

17. Close Eclipse

Now, we are ready to program the board with the design and debug the application.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

30

1.1.5 Circuit Setup
The TX and RX from the board need to be connected to a chip or converted from TTL or CMOS to
RS-232 signals. The Schmartboard RS-232 is one solution. For this particular board, connect the
RD pin to the designated TX pin (J8-8) on the evaluation kit and TD to the RX pin (J8-6) of the
evaluation kit. Connect a null-modem cable to the RS-232 connection and the other end to a
computer’s RS-232 port or USB-to-RS-232 connector.

1.1.6 Program the Board
With the design compiled, application ready, and circuit connected, we can now test the design on
the board.

1. Connect the board and the programming cable together per the cable instructions.

Note: The MAX 10 – 10M08 Evaluation Kit doesn’t come with a programming cable or built-in JTAG
USB Blaster II. You will have to use either the USB Blaster II or EthernetBlaster II external cables.
The EthernetBlaster II was used for this example. DHCP setup was not working so a direct Ethernet
cable connection was made between a PC and the EthernetBlaster II. The static IP was set for the
PC network card to 198.162.0.1. The EthernetBlaster II was accessed via a browser and then the
IP address was changed to a static IP that matched the network. The new IP address was used as
the Server name.

2. Power on the board and the programming cable box.
3. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the icon on the toolbar.

+3.3V J8-34 (MAX 10 23)

J8-4

J8-8 (MAX 10- 57) RX

J8-6 (MAX10-58) TX

R
S

-2
3

2
 D

B
-9

RTS

CTS

RD

TD

Vcc

Gnd

J2-1

J2-2

J2-3

J2-4

J3-1

J3-2

SchmartBoard RS-232

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

31

4. The Programmer dialog appears, click on the “Hardware Setup” button.
5. Click the Add hardware button, select the Hardware type and fill in any remaining

information and click OK.

6. The tool allows you to connect to a number of programming cables. We need to select the
one for our board. In the “Currently selected hardware”, click the drop-down and select the
hardware cable for the board and click Close when finished

7. A NIOS2uart_time_limited.sof file gets created during the Compile Design flow. The file is
automatically filled in. There is only one FPGA on the board and in the JTAG chain so the
file already has the Program/Configure checkbox checked. Click the Start button to

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

32

program the board. The process takes a few seconds and shows that the task completed
successfully.

Note: The reason for the “time_limited” in the name of the .sof file is that we chose a Nios II/f, which
requires a license. The design must be connected to the JTAG cable or the system will shut off
after an hour.

A dialog will appear that the design is time limited to one hour. The design can always be reloaded
when the timeout occurs.

Important: This dialog acts as a tether to the time-limited IP. You must leave this dialog running
while you are running applications.

1.1.7 Deploy the Application in Eclipse
With the design loaded and the connection to JTAG up and running, we can test the application.

1. Open a serial terminal application.
2. Set the serial connection to 115200-8-N-1 and do a connect or call that enables the serial

port communication.
3. From the Quartus menu, select Tools-> Nios II Software Build Tools for Eclipse.
4. Open Main.c, and set a breakpoint at line 11 just inside main().
5. Right-click on uartTerminal and select Debug As->Nios II Hardware.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

33

6. The program will load and start running.
7. Click F6 or hit the step-over button from the toolbar, and then click F8 or the resume button.
8. Enter a string in the terminal and hit enter. You should see the string echoed back. You

can always go back and re-run the debugger to watch the local variables.

9. Send a few more messages, and then stop debugging.
10. Run the application as a release build. Right-click on uartTerminal and select Run As->Nios

II Hardware.
11. When finished close Eclipse, the OpenCore Plus dialog, and JTAG programming

application.

Warning: The tools make it easy to download and run applications. Multiple application download
attempts can cause the tools to crash with a java runtime pop-up error.

1.2 Nios II with DUAL UART and LEDs Project

We will add to the last project to demonstrate how to updating the design requires an update to the
BSP. Another UART port will be added to display messages from the application to a SparkFun 16
x 2 matrix Serial LCD, and PIO will be added for accessing the 5 LEDs on the board. The application
will be modified to accept a numeric value (0-31) sent by the user from the terminal to light up the
LEDs. To make things more interesting, we will implement some external logic on the block diagram
to make the LEDs light up differently.

Note: The following exercise is based on an older Serial LCD model (4/15/2015) that has a different
3.3v powered controller, so the command set will be different from the latest SparkFun LCD
products.

1.2.1 Archive the Current Design
It is always a good idea to archive or back up a project.

1. Open Quartus.
2. Open the NIOS2uart project.
3. From the menu, select Project->Archive.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

34

4. A dialog appears that allows you to change the name and location. Advanced options let
you select what is to be archived. Click Archive.

The archive will be saved as a .qar file.

1.2.2 Modify the Hardware Design
Now, let’s modify the design.

1. Open Quartus.
2. Open the NIOS2uart project.
3. Open Platform Designer.
4. Open the NIOS2uartCPU.qsys file.
5. In the IP Catalog, enter UART in the search box.
6. Add the UART (RS-232 Serial Port) Intel FPGA IP to the design.
7. Set the baud rate to 9600, which is the speed of the Sparkfun LCD.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

35

8. Click Finish. The new UART will be uart_1.
9. In the IP Catalog enter PIO in the search box.
10. Add the PIO (Parallel I/O) Intel FPGA IP to the design.

11. In the configuration page, set Width to 5, leave the Direction as Output, and set the Output
Port Reset Value to 0x3.

12. Click Finish.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

36

13. Connect the wires for the new modules: clk, reset, s1 to data_master of nios2_gen2_0.
Connect uart_1’s irq to nios_gen2_0’s irq.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

37

14. The external_connection for uart_1 needs to be set. Double-click on the
external_connection line under Export.

15. Set the name to uart_1.
16. The external_connection for pio_0 needs to be set. Double-click on the

external_connection line under Export.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

38

17. Set the name to led5.
18. From the menu, select System->Assign Base Addresses. This will give the new hardware

address location in the memory map.

19. Click Generate HDL…
20. Click Close, when the design has been saved.
21. After the Generate process completes, click Close.
22. Click Finish to close Platform Designer.
23. A dialog appears reminding you that the design has changed. Click OK.
24. Open the block diagram.
25. Right-click on the NIOS2uartCPU and select Update Symbol or Block from the context

menu. The new connection points for the NIOS2uartCPU will appear.

26. Adjust the connections to their original states.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

39

27. From the toolbar, click on the pin tool and select input.
28. Drop and connect the new pin to uart_1_rxd.
29. Rename the pin connection to uart_1_rxd.

30. From the toolbar, click on the pin tool and select output.
31. Drop the symbol on the design.
32. Right-click on the symbol and select Flip Horizontal from the context menu.
33. Move the pin to connect to uart_1_txd.
34. Rename the pin connection to uart_1_txd.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

40

35. Double-click on the design to bring up the Symbol tool. We are going to add the logic gates
that were created in the second project of the Getting Started with Intel® Quartus® Prime
v21.0 and the Intel® MAX® 10-10M08 Evaluation Kit article.

36. Expand the libraries by going to primitives->logic.
37. Add an OR2, NAND2, and four NOT gates below the NIOS2uart CPU.
38. Add five output pins.
39. Connect the gates and pins and rename the input and output pins as shown.

40. Draw a bus line from led5_export[4..0] down to the logic gates.
41. Right-click on the BUS line, and select Properties.
42. Name the bus line led5[4..0], and click OK.
43. Connect the lines to the bus as shown and name each line for one bit of the bus line. Each

line is one of the bus line’s bits. Be sure to connect the output LEDD3 to the led5[2] line.

Led5-1 and led5-2 will be directly connected to the LEDD1 and LEDD2 respectively. Led5-3 will be
connected to LEDD3, but also to our little logic circuit. The pin assignments will connect everything

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

41

together. The lesson here is that the FPGA can act as an MCU processor, but with room left over.
More logic can be added to help reduce component count and board space.

44. Make sure all of the part symbols don’t have the same ‘inst’ name or the compile will fail.
45. Save the design.
46. In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. If there

is a failure, like having two components with the same ‘inst’ name like we have here,
rename the ‘inst’ to a different value like inst4. Save the design and try again.

47. Open Pin Planner. You will need the board schematic to assist with the pin placement. The
original pin assignments should already be set. We just need to add the new pin
assignments.

48. For uart_1, let’s set the RX line to pin 44, which is J8-16 on the header. Set the TX line to
45, which is J8-14 on the header.

49. The LED will be connected in the following numerical order: 132 (LED1), 134 (LED2), 135
(LED3), 140 (LED4), and 141 (LED5).

50. Set all the voltages to 3.3-V LVTTL

51. Close the Pin planner and save the project. The block diagram will be filled with the pin
assignments,

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

42

52. Compile the design. There should be no errors. You can see from the summary that we
are only using 44% of the logic elements in the MAX 10 10M08. There is more that can be
added if needed.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

43

1.2.3 Update the BSP and Change the application
With the new design successfully compiled, we can move on to modifying the application.

1. In Quartus Prime, from the menu, select Tools->NIOS II Software Build Tools for Eclipse.
2. Right-click on the uartTerminal_bsp and select Clean Project.
3. Right-click on the uartTerminal_bsp and select Refresh.
4. Right-click on the uartTerminal_bsp and select Nios II->Generate BSP. The updated

information will be pulled from the design, but it will not be obvious.
5. You will see that a new altera_avalon_pio_regs.h has been added, and system.h now has

the constants for uart_1 and pio_0.
6. Another way to see that the BSP has been updated is to right-click on the uartTerminal_bsp

and select Nios II->BESP Editor.
7. When the editor opens, click on the Drivers tab. You will see that pio_0 and uart_1 have

been added. The one change to use small_C library stays the same. Note that anytime you
change something in the design, you have to re-generate the project’s BSP.

8. Click Exit.
9. Open the main.c file in uartTerminal.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

44

10. Let’s back up the code in its current state to a different file. From the menu, select File-
>Save As, and save the main.c file as main.c.org.

11. Close main.c.org.
12. Open main.c
13. Before we go further, we also need to update the project with the new #include’s. Right-

click on uartTerminal, select index->Re-resolve Unresolved includes. The reason for this
is that files like system.h, in the bsp project, have been updated and there is a new
altera_avalon_pio_regs.h file. The application needs to be refreshed, or we will get errors
with function calls and defines not being found.

Change the main.c file to the following:

1. #include "sys/alt_stdio.h"

2. #include "system.h"

3. #include "altera_avalon_uart.h"

4. #include "altera_avalon_uart_regs.h"

5. #include "altera_avalon_uart_fd.h"

6. #include "altera_avalon_pio_regs.h"

7. #include "priv/alt_busy_sleep.h"

8. #include "sys/alt_sys_wrappers.h"

9.

10. int main()

11. {

12. alt_putstr("Fun with NIOS II and LED Logic!\n");

13.

14. char rx_buffer[1];

15. char rx_bufferString[4]; //covers two characters, the carriage return

\r and line feed \n

16. char tx_buffer[] = "Number Received: ";

17.

18. //SparkFun SerLCD commands

19. char LCDCLEAR[2]={ 0xFE, 0x01 };

20. char LCDLINE1[2]={ 0xFE, 0x80 };

21. char LCDLINE2[2]={ 0xFE, 0xC0 };

22.

23. int i=0;

24. int x = 0;

25. int y = 0;

26.

27. int fp_uart_0;

28. fp_uart_0 = ALT_OPEN(UART_0_NAME,2);

29.

30. int fp_uart_1;

31. fp_uart_1 = ALT_OPEN(UART_1_NAME,2);

32.

33. alt_putstr("Enter a number 0 through 31 and hit enter\n");

34. alt_putstr("***\n");

35. alt_putstr("\n");

36.

37. //Clear buffer

38. for(y = 0; y <= 4; y++){

39. rx_bufferString[y] = 0;

40. }

41. //Clear line display

42. ALT_WRITE(fp_uart_1,LCDCLEAR, sizeof(LCDCLEAR));

43. //Clear LEDs

44. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, 0x0);

45.

46.

47. /* Event loop never exits. */

48. while (1){

49.

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

45

50. do{

51. ALT_READ(fp_uart_0,rx_buffer, sizeof(rx_buffer));

52. rx_bufferString[i] = rx_buffer[0];

53. i++;

54. }while((rx_buffer[0] != '\n'));

55.

56. //convert to integer

57. //If the second value is the carriage return '\r' then only

convert

58. //the ones to an integer

59. if(rx_bufferString[1] == '\r'){

60. x = rx_bufferString[0]-'0';

61. }

62. else{

63. x = rx_bufferString[0]-'0';

64. x *= 10;

65. x += rx_bufferString[1]-'0';

66. }

67.

68. i=0;

69.

70. //write to the LEDs

71. if((x >= 0) && (x <= 31)){

72.

73. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, x);

74. }

75. //Send message to Line display Line 1

76. ALT_WRITE(fp_uart_1,LCDLINE1, sizeof(LCDLINE1));

77. ALT_WRITE(fp_uart_1,tx_buffer, sizeof(tx_buffer));

78.

79. alt_busy_sleep(1000000);

80. //Send message to Line display Line 2

81. ALT_WRITE(fp_uart_1,LCDLINE2, sizeof(LCDLINE2));

82. ALT_WRITE(fp_uart_1,rx_bufferString, sizeof(rx_bufferString));

83.

84. alt_putstr("\n");

85. alt_putstr("Enter a number 0 through 31 and hit enter\n");

86. alt_putstr("***\n");

87. alt_putstr("\n");

88.

89. alt_busy_sleep(4000000);

90.

91. //Clear buffer

92. for(y = 0; y <= 4; y++){

93. rx_bufferString[y] = 0;

94. }

95. }

96.

97. return 0;

98. }

Since only a number from 0 to 31 can change the LEDs, the rx_bufferString has space for only 4
characters. When data is received from the serial port, it is not just the message but also the
carriage return (\r) and the linefeed (\n) characters as well. The rx_bufferString makes room only
for those possibilities. A message and commands for the 16x2 serial LCD are set up. Both UARTs
are opened. The buffer, LEDs, and display are all cleared. A message to the user is sent over the
standard I/O port (uart_0) to the terminal application.

The main program is similar to the original. The application waits for a message; and when the
message arrives, the rx_bufferString value is converted to a number. The number is then sent to
the PIO to control the LEDs. A message is sent to the 16x2 serial LCD indicating the value that

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

46

was received. A user message is sent asking to enter a number, and the serial buffer is cleared for
the next message.

14. Save main.c
15. Build the application. Fix any errors and rebuild.
16. Close Eclipse.

1.2.4 Circuit Setup
The Schmartboard RS-232 module stays connected as before. The 16x2 serial LCD can be
connected with VCC connected to J8-37, GND connected to J8-39, and the RX pin connected to
J8-14.

1.2.5 Program the Board and Test the Application
First, program the board with the hardware design and then download and run the application.
Make sure the JTAG is connected to the MAX 10 10M08 Evaluation Kit board, and power on the
board. Also, you should connect a null modem cable from the host PC, with running a terminal
application, to the board.

1. Open Quartus and the NIOS2uart project that you have previously compiled.
2. Open the JTAG programming tool and program the board with the

NIOS2uart_time_limited.sof file. The countdown dialog will appear.
3. Open a serial terminal program and configure the serial communications to 115200-8-N-1.
4. Open Eclipse.
5. Right-click on the uartTerminal application and select Run As->Nios II Hardware.

Once the application has been downloaded and started running, LEDD1 and LEDD2 will be on,
since we set the PIO initial value to 3 in the Platform Designer. The message to enter a number
should appear on the terminal. Enter a number between 0 and 31 and hit enter. The LEDs will
change accordingly and the 16x2 serial LCD will have a message and the number you entered.
You will see some strange characters after the number. These are the \r and \n. You could add
some code to remove these characters from appearing.

The LED results are a little different because of the logic gates used to control LEDD4 and LEDD5.
The LEDs are active low, thus the use of NOT gates for all the LEDs.

Decimal Binary LED5 LED4 LED3 LED2 LED1

0 0 0000 OFF OFF OFF OFF OFF

1 0 0001 OFF OFF OFF OFF ON

2 0 0010 OFF OFF OFF ON OFF

3 0 0011 OFF OFF OFF ON ON

4 0 0100 OFF ON ON OFF OFF

5 0 0101 OFF ON ON OFF ON

6 0 0110 OFF ON ON ON OFF

7 0 0111 OFF ON ON ON ON

8 0 1000 OFF ON OFF OFF OFF

9 0 1001 OFF ON OFF OFF ON

10 0 1010 OFF ON OFF ON OFF

11 0 1011 OFF ON OFF ON ON

12 0 1100 OFF ON ON OFF OFF

13 0 1101 OFF ON ON OFF ON

14 0 1110 OFF ON ON ON OFF

15 0 1111 OFF ON ON ON ON

16 1 0000 OFF OFF OFF OFF OFF

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

47

17 1 0001 OFF OFF OFF OFF

18 1 0010 OFF OFF OFF ON OFF

19 1 0011 OFF OFF OFF ON ON

20 1 0100 ON ON ON OFF OFF

21 1 0101 ON ON ON OFF ON

22 1 0110 ON ON ON ON OFF

23 1 0111 ON ON ON ON ON

24 1 1000 ON ON OFF OFF OFF

25 1 1001 ON ON OFF OFF ON

26 1 1010 ON ON OFF ON OFF

27 1 1011 ON ON OFF ON ON

28 1 1100 ON ON ON OFF OFF

29 1 1101 ON ON ON OFF ON

30 1 1110 ON ON ON ON OFF

31 1 1111 ON ON ON ON ON

6. When you are finished testing the application, close Eclipse, click Ok on the OpenCore

Status dialog, and close Quartus.

1.3 Summary: Build Your Own MCU

With Nios II and the Intel FPGAs, you can build your own custom MCU with the peripherals needed
for the system. Serial ports, SPI host, ADC, I2C master, and PIO are some of the items that can
be added to a design to build a custom MCU. The last project had two UART ports and PIO ports.

There were a number of other items covered and hinted at in the projects:

• The BSP Editor is used to modify C libraries and HAL drivers.

• Remembering to update the Eclipse project BSP after there is a hardware design change
is important.

• Note the differences between the available UART IP blocks.

• Opening Eclipse after programming the board with the design and then running the Eclipse
application helps to avoid any issues with the JTAG. If you didn’t see this, it is because we
instructed you to close Eclipse beforehand.

• The \r and \n in the message sent from a terminal have to be addressed in the program.

• Wiring and mapping the external hardware to the board requires the help of the schematic
diagram.

• External logic can be added to the Nios II MCU within the FPGA design.

Finally, because memory was limited, the small C Library was used, thus there are no C library
stdio calls nor the usual open, close, etc. for accessing the serial ports. Instead, the Nios wrapper
APIs in the BSP were used for accessing the serial ports.

1.4 References

The following references were used for this article:

1.4.1 Intel FPGA Training Videos:
The Nios® II Processor: Introduction to Developing Software

Designing with NIOS® II Processor Part 1

Designing with NIOS® II Processor Part 2

https://learning.intel.com/developer/learn/course/835/The%2520Nios%25C2%25AE%2520II%2520Processor%253A%2520Introduction%2520to%2520Developing%2520Software
https://www.youtube.com/watch?v=WGteIQqNfvY
https://www.youtube.com/watch?v=o-K8VBa0Uk8

Rev 1.5

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

48

1.4.2 Online Videos
My First Nios II Tutorial (1) by Terasic, Inc

My First Nios II Tutorial (2) by Terasic, Inc

Qsys Tutorial 1 - Adder using NIOS II processor

37 FPGA NIOS II QSYS 07 uart (or serial port) - YouTube

1.4.3 Other Resources
Nios II Software Developer Handbook - 3.1. Installing Eclipse IDE into Nios® II EDS (intel.com)

Intel® MAX® 10-10M08 Evaluation Kit schematic file.
Altera_10M08S_E144_eval_schematic_REV_1_0.pdf.

https://www.youtube.com/watch?v=DBkza5-SlqQ
https://www.youtube.com/watch?v=t-nPunZ49nY
https://www.youtube.com/watch?v=fjIpzcCmZyY
https://www.youtube.com/watch?v=nHFVwthr_Ew
https://www.intel.com/content/www/us/en/docs/programmable/683525/21-3/installing-eclipse-ide-into-eds.html

