Rev 1.3

Annabgoks-

Nios® Il and the Interval Timers’ Alarm and Timestamp

Functionality on the Intel® MAX® 10-10M08 Evaluation Kit

By Sean D. Liming and John R. Malin
Annabooks, LLC. — www.annabooks.com

January 2023

Timing is everything. The Interval Time IP that comes with Quartus not only provides the date and
time for a Nios Il processor but also supports alarms and timestamp functionality. The paper walks
through a couple of applications that test both.

Please see the article Intel® Quartus® Prime Lite and Nios® Il SBT for Eclipse Installation
Instructions on Annabooks.com to install the software needed for this hands-on exercise.

The Project Requirements:

¢ Intel Quartus Prime Lite Edition V21.0 and Nios® Il SBT for Eclipse are already installed.

e Intel® MAX® 10 - 10M08 Evaluation Kit and the schematic for the evaluation board are
required. The schematic PDF file can be downloaded from the Intel FPGA website.

¢ Intel FPGA Programming cable — USB Blaster Il or EthernetBlaster Il. The Intel® MAX®
10 - 10M08 Evaluation Kit doesn’t have a built-in USB Blaster Il onboard.

e Intel® Quartus® Prime Lite and NIOS® [l SBT for Eclipse Installation Instructions on
Annabooks.com

Note: There are equivalent MAX 10 development and evaluation boards available. These boards
can also be used as the target, but you will have to adjust to the available features on the board.
Please make sure that you have the board’s schematic files as these will be needed to identify pins.

1.1 Nios Il Timer Project
The custom MCU will comprise the following IP blocks:

Nios Il processor
Onchip RAM
Interval Timer
Parallel 10 for LEDs
Sys ID

JTAG UART

1.1.1 Create the Project
The first step is to create a design project.

1. Open Quartus
2. Click on the New Project Wizard

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.


http://www.annabooks.com/
https://www.annabooks.com/Articles/Articles_FPGA/Intel-FPGA-Tools-Setup-Rev1.1.pdf

Annabooks Rev 1.3

New Project Wizard

g
W [RIQ]|eo | @
Documentation Support What's New Notifications

Open Project

3. Click Next to the Introduction dialog
4. Select or create a project directory \NIOS2_Timer (Do not use the Quartus installation
directory) and name of the project: “NIOS2timer”. Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project
directory is a separate path from the Quartus installation files. Also, there can be no spaces in the
name of the folders or projects.

5. Project Type: Empty project, click Next

6. Add File no files to add, click Next.

7. Family, Device & Board Settings, click the Board tab and select: MAX 10 FPGA 10M08
Evaluation Kit, and click Next.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.



AAnnabgoks-

Rev 1.3

® NewP roject Wizard

Family, Device & Board Settings
Device | Board
Select the board/development kit you want to target for compilation

Family: | MAX 10 * | Development Kit: | Any

Ayailable boards:

Mame Version Family Device
EH  Arrow MAX 10 DECA 0.9 MAX 10 T0MS0DAF4B4CEGES
FH  BeMicro MAX 10 FPGA Evaluation Kit 1.0 MAX 10 T0MO8DAF4B4CBGES
FH max 10DE10- Lite MAX 10 T0MS0DAF4B4CEGES

EH max 10FPca Development Kit Max 10 TOMS0DAF256CT7G
EH  Max 10 NEEK 1.0 Max 10 TOMS0DAF4B4I7G

==:] Odyssey MAX 10 FPGA Kit 1.0 Max 10 10MO8SAUTE9CBGES

V| Create top-level design file.

Can't find your beard? Check the Design Store for additions and search for baseline under Design Examples.

Help < Back Next >

Vendor
Arrow 487¢
Arrow 8064
Altera 497¢

a MAX 10 FPGA 10M08 Evaluation Kit - MaX 10 T0MOBSAE144C8GES E

Altera 497¢
Terasic 487¢
Macnica ... 8064
b
Einish Cancel

8. EDA Tools: click Next.
9. Summary: click Finish

Note: The actual MAX 10 on our board is the 10MO8SAE144C8G, thus it is not an Engineering
Sample (ES). The next two steps change the device to the production device. Your experience

might be different. These next two optional steps change the device.

10. In the project navigation pane on the left, right-click on 10: 10M08SAE144C8GE, and select

Device from the context menu.

11. In the Available devices, scroll down and select the 10M0O8SAE144C8G. Click OK.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.



JAinnahooks: Rev 1.3

& Device

Device Board

Select the family and device you want to target for compilation.

You can install additional device support with the Install Devices command on the Tools menu.

To determine the version of the Quartus Prime software in which your target device is supported, refer to the Device Support List webpage.

Device family Show in ‘Available devices' list
Eamily: | MAX 10 [DA/DF/DC/SA/SC/5L) - Package: 'An}, - |
Device: | All M Pin count: Any 1
Target device Core speed grade: | Any -
Mame filter:

Auto device selected by the Fitter

®' specific device selected in "Available devices' list V| show advanced devices

Other. nfa
Device and Pin Options...

Ayailable devices:

Name Core Voltage Es Total 1/Os GPI0s Memory Bits Embedded multiplier 9 bitelem
_-__
T0MOBSAET44CBGES 3.3V 8064 101 101 387072
TOMOBSAE14417G 3.3V 8064 10 10 387072 43
“InMan.nF'IAdI?D kY RORA 1M 107 3ATNT2 a8 x

Migration Devices... | 0 migration devices selected

iW Buy Software ' oK Cancel Help

1.1.2 Create the Design in Platform Designer

Quartus supports many design types to create an FPGA design. The Platform Designer tool will be
used for this hands-on exercise. Platform Designer makes it easy to add already-built IP blocks
and interconnect them.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon
from the toolbar.

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform
Designer makes it easy to add IP blocks and make interconnections between the blocks.

2. The top left pane contains the IP Catalog with all the available IP blocks that come with
Quartus Prime. In the search box, type NIOS.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.



Annabgoks- revte

% Ip Catalog % ==
, NIDS X K
P_roject
L.l New Component...
Library

E--Basic Functions
' E}--Simulatin:nn; Debug and Verification
=1-Simulation
® Mios IT Custom Instruction Master BFM Intel FPGA IR
‘.. ® Nios II Custom Instruction Slave BFM Intel FPGA IP
EI -Processors and Peripherals
D Co-Processors
EI NII:IS II Custom Instructions
¢ @ Bitswap
#& Custom Instruction Interconnect
® Custom Instruction Master Translator
- ® Custom Instruction Slave Translator
® Floating Point Hardware
— Floating Paint Hardware 2
= Emhedded Processors

LS B¥'lios 1T Processor

Mew... | Edit... o= Add...

3. Expand the Processors and Peripherals and Embedded Processors branches and double-
click on the Nios Il Processor.

4. This will open the Nios Il Configuration page. The first tab is to select the type of core Nios
[I/e or Nios Il/f. We will keep the defaults for now. Click Finish.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

5



JAinnahooks: Rev 13

Nios II Processor
Mt dltera_rios2_gen2

“Documentation

] how signsis Main | Vectors Caches and Memory Interfaces  Arithmetic Insiructions | MMU and MPU Settngs  JTAG Debug | Advanced Features

|~ selact an
nios2_gen2 0 Nios ILCore: () nios 1fe
K dsta_master © s 0t
et struction_mast : :
= e Nios II/e Nios I1/f
debug reset
X i [ooel |20 Summary || Resource-optimized 32-bit RISC Performance-optimized 32-bit RISC
lebug_mem_slave: custom_insiruction_master,
os _custom_i Features || JTAG Debug JTAG Debug
e gons ECC RAM Protection Hardware Multiply/Divide
= Instruction/Data Caches
Tightly-Coupled Masters
ECC RAM Protection
External Interrupt Controller
Shadow Register Sets
TPU
MMy
RAM Usage 2 +Options 2+ Options

@ Error: nios2_gen2_0: Instruction Cache is larger than the Instruction Address, Please reduce the Instruction Cache Size. Current Tag Size is 0
3 Error: nios2_gen2_0: Reset slave is not specified. Please select the reset siave
) Error: mios2_gen2_0: Exception siave is not spedified. Please select the exczption iave

Cancel Finish

1. The processor will be added to the design. Right-click on the name nios2_gen2_cpu, and
rename it to nios2.

Now let’'s add the RAM IP block. In the IP Catalog enter RAM in the search box.
Double-click on On-chip Memory (RAM or ROM) in the Intel FPGA IP.

wn

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.



Annabooks Rev 1.3

% IP Catalog % e
|, RAM | K
P_ruject LY
..l New Component...

Li_brar\r

EI--BE_ISi:: Functions
E}--Dn Chip Memory
L B _n-Chip Memory (RAM or ROM) Intel FPGA IP

=-DSP
=-Videa and Image Processing

‘.. ® Frame Buffer II (4 Ready) Intel FPGA IP
[=-Memary Interfaces and Controllers

=-Memory Interfaces with AltMemPHY
L
E}--Memnry Interfaces with LniPHY
... » DDR2 SDRAM Contraller with UniPHY Intel FPGA IP
® DDR3 SDRAM Controller with UniPHY Intel FPGA IP
® |PDDR.2 SDRAM Contraoller with UniPHY Intel FPGA IF

.
.
...... [ ]
[=-University Program
=-Clock v
£ >
MNew.., | Edit... o= Add...

4. The configuration page will appear. Change the Total memory size to 16384. We need
more memory to run the application.

[~ size
Enable different width for Dual-port access
Slave 51 Data width: 33 .
Total memory size: 16384 bytes

Minimize memary block usage (may impact fmax)

[~ Read latency

5. Uncheck the box for “Initialize memory content”, and click Finish.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.



Rev 1.3

finnabooks-

[~ Memory initialization

[ fnitialize memory content

Enable non-default initizlization file
Type the filename (e.g: my_ram.hex) or select the hex file using the file browser button,

User created initizlization file: onchip_mem.hex

Enable Partial Reconfiguration Initialization Mode

6. The On-chip Memory (RAM or ROM) in the Intel FPGA IP will be added to the design, right-
click on the name, and rename it to onchip_RAM.

7. Inthe IP Catalog search, enter timer.

8. Double-click on the Interval Timer Intel FPGA IP.

™ 1P Catalog 3% =
4, timer x a
P_mject

il New Component..

L'!brarv

B-Pr_ocessors and Peripherals
=-Peripherals
S W nterval Timer Intel FPGA IP

9. Keep the settings as they are and click Finish.
10. In the IP Catalog search, enter system ID.
11. Double-click on the System ID Peripheral Intel FPGA IP.

|, sys ¥ £

Project
L.l New Component,..
Library
Li—_l--Basic Functions
E}--Simulation; Debug and Verification
é--Debug and Performance
i @ Intel FPGA In-System Sources & Probes
® 5.0 Hub Controller System
# System ID Peripheral Intel FPGA IP
i ® Trace System
[=l-Processors and Peripherals
E}--H_ard Processor Systems

I';'l--Uljiversity Program
E}--Cl_ock
i @ Systern and SDORAM Clocks for DE-series Boards

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.



Rev 1.3

AAnnabgsoks-

12. A configuration page will appear. There are no changes to be made. Click Finish.

13. In the IP Catalog search, enter uart.
14. Double-click on the JTAG UART Intel FPGA IP.

M IpCatalog i |

X A2

4, uart

Project
Lol New Camponent. ..
Library
- Interface Protocols
| &-Serial
® 16550 Compatible UART Intel FPGA IP

Ll ITAG UART Intel FPGA IP

L@ LART (R5-232 Serial Port) Intel FPGA IP
é--LIniversitv Program
é--Cnmmunicaﬁons
Lo IrDAUART
L. ® R5232UART

Mew... | Edit... = Add...

T ]

15. A configuration page will appear. There are no changes to be made. Click Finish.

16. In the IP Catalog enter pio in the search box.
17. Add the PIO (Parallel I/O) Intel FPGA IP to the design.

=% pio
Project
Ll New Companent...
Library
éJ---Interface Protocols
: E‘--PCI Express
é--QSYS Example Designs
b

LEJ--Processors and Peripherals
[=-Peripherals
‘v @ PIO (Parallel 1/O) Intel FPGA IP

18. In the configuration page, set the Width to 5, leave the Direction as Output, and set the
Output Port Reset Value to 0x1f. Since the LEDs are active low, the value turns 5 LEDs off

on startup.
19. Click Finish.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.



JAinnahooks: Rev 1.3

O (Parallel I/0) Intel FPGA IP - pio_0

“ PIO (Parallel 1/O) Intel FPGA IP

MagaCers® altera_avalon_pio

[~ Block Diagram |

L3

[~ Basic Settings
[[] show signals Width (1-32 bits): 5
piu 5 Direction: O Bidir
(O Input
Ik
lock o InOut
eset
reset (® Output
1 valon Output Port Reset Value: |gypoooo000000000 1f
xternal_connection onduit
[~ Output Register
ahtera_avalon_pio ] Enable individual bit setting/dearing

|~ Edge capture register
Synchronously capture

Edge Type: RISING

Enable bit-clzaring for edge capture register

[~ Interrupt
Generate IRQ

IRQ Type: LEVEL

Level: Interrupt CPU when any unmasked IO pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

20. The PIO will be added to the design. Rename the PIO to pio_0.

21. For the PIO exernal_connection, double-click on the Export column and set the value to
led5. This will provide a base name for connecting the signals to the PINs on the chip. The
connection will be made in PIN Planner.

22. Now we need to wire the IP blocks together. The picture below shows all the writing
connections for the design.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

10



JAinnahooks: Rev 13

I:: System Contents 2% | AddressMap % ‘ Interconnect Requirements &% ‘
x| | a ‘ System: NIOS2ZtimerMCU  Path: dk_0
+ Use Name Description Export Clodk
! = ck_0 Clock Source
X dk_in Clock Input clk exported
E dk_in_reset Reset Input reset
: — ck Clock Qutput ck_0
= i clk_reset Reset Output
- B I nios2 Mios I1 Processor
v clk Clock Input clk_0
¥ reset Reset Input [clk]
———— data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memory Mapped Master [clk]
irq Interrupt Receiver [clk]
debug_reset_request  [Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk]
custom_instruction_m... |Custom Instruction Master
onchip_RAM On-Chip Memory (RAM or ROM) Intel ...
dk1 Clock Input clk_0
51 Avalon Memory Mapped Slave [ck1]
resetl Reset Input [clk1]
timer_0 Interval Timer Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk]
irg Interrupt Sender [clk]
sysid_gsys_0 System ID Peripheral Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clk]
jtag_uart_o JTAG UART Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk]
irg Interrupt Sender [clk]
pio_0 P10 (Parallel IjO) Intel FPGA IP
ck Clock Input clk_0
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk]
external _connection Conduit leds

23. Let’s assign a base address. From the menu, select System->Assign Base Address. This
will remove a number of errors from the message box. You will see the base address values
for each IP change in the System Contents tab.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

11



Rev 1.3
Annabgoks-

Platform Designer - unsaved.gsys™ (E\FPGA\Intel_Max_10_FPGA_Evaluatis

File Edit Systern Generate View Tools Help
el Upgrade IP Cores... I:—c .S‘j'
Assign Base Addresses |
w 5YS i
! Assign Interrupt Numbers
Projec 4 ¢ + |0
- | Assign Custom Instruction Opcodes !
Library Create Global Reset Metwork boo
Ei"BE_IS E
= Show Systern With Platform Designer Interconnect =
=
Remove Dangling Connections & l
. v
Import Interface Requirements...
=W TdCE 3YSIEN T

24. Finally, let’'s set the reset and exception vector addresses. Double-click on the nios2 to
open the configuration page.

25. Click on the Vectors tab.

26. Change the Reset vector memory drop-down to onchip_ RAM.s1.

27. Change the Exception vector memory drop-down to onchip_ RAM.s1.

4 parameters &3 -r

System: NIOS2adcdMCU  Path: nios2

Nios II Processor ﬂ
e tail

altera_nios2_gen2

Main Vectors  Caches and Memory Interfaces  Arithmetic Instructions  MMU and MPU Settiny

|' Reset Vector

Reset vector memory: onchip_RAM.s1 e
Reset vector offset: 000000000
Reset vector: 0x00004000

|' Exception Vector

Exceplion vector memory: onchip_RAM.s1 ~
Exception vector offset: 0x00000020
Exception vectar: 0x00004020

|~ Fast TLB Miss Exception Vector
Fast TLE Miss Exception vector memory: |pjone

Fast TLE Miss Exception vector offset: | gx00000000
Fast TLE Miss Exception vector: 0x00000000

28. Click on Generate HDL...

29. Keep the defaults and click the Generate button.

30. A dialog will appear asking you to save the design, click Save.

31. Give the name as NIOS2timerMCU.gsys and click Save.

32. Once the save has been completed, click Close.

33. The generate process kicks off. The processes should succeed, click Close.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

12



Annabooks Rev 1.3

34. Click Finish to close the design.

35. Quartus then reminds you to add the new design to the project. Click Ok.
36. In the Project Navigator, click on the drop-down and select Files.

37. Right-click on Files and select Add/Remote Files in Project.

Project Navigator = Files »* G 0@ &

& Filr-

&' Add/Remove Files in Project..

38. A Settings — NIOS2timer page appears with Files on the left highlighted. Click the three
dots browse button for File name, and navigate to
\NIOS2_Timer\NIOS2timerMCU\synthesis folder.

39. Click on NIOS2timerMCU.qip file and click open

Mame

csubmodules
| ] NIOS2timerMCU.qgip
| ] MIOS2timerMCU.v

40. Click OK to close the Settings- NIOS2timer page. The qip file is added to the Project
navigator list. Underneath are all the Verilog files that were generated by Platform
Designer.

Project Mavigator @ Files * |Q[1E ®

Fa

Files

- E NIOS2timerMCUfsynthesis/NIOS2timerMCU.gip

e D52t merMCU/synthesis/MIOS2timerMCLLY

MIOS2timerMCU/synthesis/submodulesaltera_rese
MIOS2timerMCU/synthesis/submodulesfaltera_rese
MIOS2timerMCU/synthesis/submodules/altera_rese
MIOS2timerMCUfsynthesis/submodules/NIOS2time
MIOS2timerMCUfsynthesis/submodules/NIOS2time
MIOSs2timerMCU/synthesis/submodules /MNIOS2time
MIOS2timerMCU/synthesis/submodules /NIOS2time
MIOS2timerMCU/synthesis/submodules /NIOS2time
5 MIoS2timerMCU/synthesis/submodules/altera_merl
MIOS2timerMCUfsynthesis/submodules/NIOS2time
=1 MIOs2timerMCUfsynthesis/submeodules/NIOS2time

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

13



Ainnabagks- Rev 1.3

41.

42.
43.

44.

45.

46.

In the Project Navigator Right-click on the NIOS2timerMCU/synthesis/NIOS2timerMCU.v
file, and select Set as Top-Level Entity from the context menu.

Save the project.

In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The
analysis will take some time, and it should succeed in the end. This step helps to diagnose
any errors and finds the Node Names for the pin assignments in the next step.

Once the process completes, the pin assignments need to be set, from the menu select

Assignments->Pin Planner or click on the = icon from the toolbar. The analysis just
run populated the Node Name list at the bottom of the Pin Planner dialog.

Using the board schematic, locate the pins for the SW1 and the 50MHz clock. Set the
Location values for both node names. For the MAX 10 — 10M08 Evaluation Board, these
values are as follows:

Node Name Location
SW1 PIN_121
Clk_50MHz: PIN_27
altera_reserved tck PIN 18
altera_reserved tdi PIN 19
altera_reserved tdo PIN_20
altera_reserved tms PIN_16
Led5 export[4] PIN_141
Led5 export[3] PIN_140
Led5_export[2] PIN_135
Led5 export[1] PIN_ 134
Led5 export[0] PIN_132

Set the I/O Standard to 3.3V-LVTTL for all pins except JTAG. You can see from the
schematic that the 1/O are all tied to 3.3V.

& | Named{* v |« | Edit

i} Mode Name Direction Location 1/ Bank VREF Group Fitter Location IfO Standard
- altera_reserved_tck Input PIN_18 1B B1_NO PIN_18 2.5V Sc... Trigger
iﬁ_ altera_reserved_tdi Input PIN_19 1B B1_NO PIN_19 2.5V Sc... Trigger
- altera_reserved tdo Output PIN_20 1B B1_NO PIN_20 25V
iﬁ_ altera_reserved_tms Input PIN_16 1B B1_NO PFIN_16 25V 5c._Trigger
& cli_clk Input PIN_27 2 B2 _NO PIN_27 3.3-V LVTTL
‘@ led5_export[4] Output PIN_141 8 BE_NO PIN_141 3.3-V LVTTL
‘@ leds expori[3] Output PIN_140 8 EB_NO PIN_140 3.3-V LVTTL
B led5_export[2] Output PIN_135 8 BA_NO PIN_135 3.3-V LVTTL
B led5_export[1] Output PIN_134 8 BA_NO PIN_134 3.3-V LVTTL
‘@ led5_export[0] Output PIN_132 8 BB _NO PIN_132 3.3-V LVTTL

E & reset_reset n Input PIN_121 8 BE_NO PIN_121 3.3-V LVTTL

= | cenew nndess
47. Close the Pin Planner when finished. The diagram gets updated with the pin numbers.

48.

Save the project.

Note: Quartus can crash unexpectedly, which may be due to the fact that it was written in Java and
is not a native Windows application based on .NET. Therefore, a best practice at this point is to
make a backup of the project folder. Archiving is simple. From the menu, Project->Archive Project.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

14



AAnnabooks-

Rev 1.3

49. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

11.3

Start from the context menu, or you can click on the symbol in the toolbar. The design

should compile successfully.

@, <<Filters>
Flow Status Successful - Wed Jul 13 23:00:07 2022

Quartus Prime Version 21.1.0 Build 842 10/21/2021 5J Lite Edition

Revision Mame NIOS2timer
Top-level Entity Name NIOS2timerMCU
Family MAX 10

Device TOMOBSAET44C8G
Timing Models Final

Total logic elements

Total registers

3,635/ 8,064 (45 %)
2180

Total pins 77107 ([ 7%)

Total virtual pins 0

Total memory bits 194,240 f 387,072 (50 %)
Embedded Multiplier 9-bit elements 648 (13 %)

Total PLLs 0/1(0%)

UFM blocks 0/1(0%])

ADC blocks 0/1(0%)

Eclipse Application: Alarm

The first application will test the Alarm functionality.

1.

6.
7.

In Quartus Prime, from the menu, select Tools->Nios |l Software Build Tools for Eclipse.
Eclipse will open and ask for the root workspace directory. Set the workspace folder to
something like \Documents\FPGA\Apps, and hit ok. It doesn’t matter the location of the
workspace, since the actual applications for the project will exist within the
\NIOS2_Timenr\software folder.

In Eclipse, from the menu, select File->New-> Nios Il Application and BSP from Template.

& Nios || - Eclipse

File Edit Mavigate Search Project Run  Miosll Window Help

MNew Alt+Shift+N > [T  Nios |l Application and BSP from Template
Open File... [c]  Mios |l Application
Close Ch [ Nios |l Board Support Package
Close Al Cri+Shifesw | 2 Niosil Library
4 Project...
Save Ctrl+5
e AL 9 Other... Ctrl+N
Save All Ctrl+5Shift+5

The first step is to open the SOPC file that was generated for the hardware design. Click
on the three dots button.

Navigate to the \NIOS2_Timer folder and open the NIOS2timerMCU.sopcinfo file. The CPU
name will reflect the name we gave the CPU in Platform Designer.

Enter the project name: timerTest.

In the Project Template, select Blank Project

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

15



AAnnabooks-

Rev 1.3

8. Click Finish.

= MNios Il Application and BSP from Template

Nios Il Software Examples

template

Target hardware information

Create a new application and board support package based on a software example

SOPC Information File name:

EAFPGANIntel_Max_10_FPGA_Evaluation_Kit\NIOS2_Timer\NIOS2tir

CPU name: e

Application project

“

Project name: | timerTESﬂ

[] Use default location

Project location:

Project template

EA\FPGANIntel_Max_10_FPGA_Evaluation_Kit\MIOS52_Timer\software\timerTe:

Board Diagnostics
Count Binary
Fleat2 Functionality
Float2 GCC

Float2 Performance
Helle Freestanding
Hello MicroC/O5-11

add your code,

Templates Template description
Blank Project Blank Project creates an empty project to which you can ~

For details, click Finish to create the project and refer to the
readme.txt file in the project directory.

The BSP for this template is based on the Altera HAL
operating system. To use a B5P based on a different

Hello World operating system, click Next and select the BSP from the

Helle World Small BS5P projects list.

Memory Test

Memory Test Small For infoermation about how this software example relates to
Mios Il hardware design examples, v

Cancel

Two projects will be generated. The timerTest _bsp is generated to give you the HAL drivers and
API based on the hardware design. The timerTest is the application that will run on the hardware.

9. We need to edit the BSP to use the small C library and drivers. The BSP Editor tool allows
you to edit the settings.bsp file to make specific changes for the target. Right-click on
timerTest_bsp and select Nios |I->BSP Editor from the context menu.

10. The BSP Editor opens and opens the settings.bsp file automatically. If you started the BSP
Editor from the main menu, you would have to manually navigate to open the file. In the
BSP Editor, tick the box for enable_small_c_library and enable_reduced_device_drivers.

Copyright © 2023 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

16



JAinnahooks: Rev 1.3

s BSP Editor - settings.bsp

Flle Edit Tools Help

Software Packages Drivers Linker Script  Enable File Generation Target BSP Directory

SOPC Information file:  E:\FPGAMIntel_Max_10_FPGA_Evaluation_Kit\NIOS2_Timer\NIOS2timerMCL. sopcinfo
CPUname: nios2
Operating system:  Altera HAL Version: | default b
BSP target directory: E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\WIOS2_Timer\software\timerTest_bsp

E-Settings || hal ~
= Common sys_clk_timer, timer_0 ~
=-hal - =
sys_clk_timer timestamp_timer timer_ 1 ~
~timestamp_timer =
stdin stdin: i v
—etdout jtag_uart_0
-stderr stdout jtag_uart 0 ~
-enable_smal_c_library
--gnable_gprof stderr: jtag_uart_0 ~
-enable_reduced_device_drivers
--anable_sim_optimize enable_small_c_library
inker
enable_exception_stack L] enable_gprof
exception_stack_size enable_reduced_device_drivers
--axception_stack_memory_region_r
- enable_interrupt_stack [ enable_sim_optimize
interrupt_stack_size hal.linker
interrupt_stack_memory_region_nz
< > [ enable_exception_stack ©

Information  problems Processing

() Mapped module: “nios2” to use the default driver version. A
(@ Mapped module: "timer_0" to use the defalt driver version.

@ Mapped module: "timer _1" to use the default driver version.

@ Mapped module: "pio_0" to use the default driver version.

@ Mapped module: “jtag_uart_0" to use the default driver version.

@ Mapped module: “sysid_gsys_0" to use the default driver version,

(@ Finished loading drivers from ensemble report.

() Loading BSP settings from settings file.

() Finished loading SOPC Builder system info file "E:\FPGA\Int=l_Max_10_FPGA_Evaluation_Kit\WIOS2_Timer |NIOS2timerMCL. sopcinfo” "]

Generate Exit

The interval timer can either be a sys_clk_timer or a timestamp_timer, but a single interval timer
cannot be both. Two intervale timers could have been added to the design. One timer (timer_0)
for the system clock timer (alarms / count down) and another timer (timer_1) for the timestamp
timer. For this project, we will flip timer_0 between the two application projects. The first project
will be the alarm so leave sys_clk_timer as is.

11. Click Generate to generate the changes.
12. Click Exit when finished.

The timerTest_bsp contains the key files that will help with filling in the code to access the timers
and pio port. System.h contains the definitions that can be used for how the timer and PIO were
set up in Platform Designer. Since we are using the small_C_library for space contain reasons, the
standard C io calls cannot be used. Instead, we will be using the Nios Il HAL API to access the
timer, pio, and the standard output via Jtag uart. The header files for the timestamp.h and alarm.h
contain the APIs needed for the application.

13. We need to add a main.c file to the project. Right-click on the timerTest project, and select
New->File from the context menu.

14. Enter the file name, main.c, and click Finish.

15. Add the following code to the main.c file.

#include "sys/alt stdio.h"

#include "system.h"

#include "priv/alt busy sleep.h"
#include "sys/alt sys wrappers.h"
#include "altera avalon pio regs.h"
#include <sys/alt timestamp.h>
#include <sys/alt alarm.h>

So o WN R

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

17



Rev 1.3
Annabgoks-

8.

9.

10. static alt u32 toggleFlag = 0;

11.

12. //Alarm callback will toggle the LEDs

L. alt u32 alarm callback (void* context) {

14.

15. if (toggleFlag) {

16. toggleFlag = 0;

17. IOWR ALTERA AVALON PTIO DATA (PIO_O_BASE, 0x15) ;

18. }

19. else({

20. toggleFlag = 1;

21. IOWR ALTERA AVALON PTIO DATA (PIO_O_BASE , Oxa);

22. }

23. //return alt ticks per second(); //periodic alarm

24. return O;

25. }

26.

27.

28. int main()

29. {

30.

31. alt putstr("Alarm test\n");

32. IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, 0x18);

33.

34. ///Set the alarm

35. static alt alarm countDownAlarm;

36. if (alt alarm start (&countDownAlarm, 5000, alarm callback,
NULL) <0) {

37. alt putstr("No System Clock Found\n");

38. }

39.

40. while (1) {

41.

42 for(int i = 0; 1 < 100; i++){

43. alt printf ("Application is running %x\n", 1i);

44 . usleep (50000) ;

45. }

46. usleep (50000) ;

47. }

48.

49. return 0;

50. }

The basic concept for programming on top of the provided HAL drivers is the HAL APl Wrappers.
The various driver header files contain the wrapper APIs that are used to access the timer and PIO.

Nios Il HAL APl Wrappers

Nios Il HAL Drivers

The alarm needs a callback when the alarm triggers. More than one alarm and callback can be in
the code. The callbacks are put into a linked list and managed by the interrupt handler. Lines 10-
25 are the callback function for this exercise. The alarm will toggle the LEDs in a pattern based on

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

18



Ainnabagks- Rev 1.3

the toggleFlag. There is a return value of 0. The value 0 tells the timer driver that this is a one-shot
alarm and removes the callback from the alarm link list. If an integer value or alt_ticks_per_second()
is in the return, the alarm will fire off over and over again at the periodic rate until the
alt_alarm_stop() function is called.

Lines 35-38 create an instance of the alarm and start the alarm countdown with a time of 5 seconds
and assign the alarm_callback to respond when the countdown reaches zero. The rest of the
program keeps the application alive.

16. Save the file.

17. Right-click on timerTest project again, and select Build Project. The build should complete
successfully, and the timerTest.elf file has been created.

18. Close Eclipse

Now, we are ready to program the board with the design and debug the application.

1.1.4 Program the Board
With the design compiled, application ready, and circuit connect, we can now test the design on
the board.

1. Connect the board and the programming cable together per the cable instructions.

Note: The MAX 10 — 10M08 Evaluation Kit doesn’t come with a programming cable or built-in JTAG
USB Blaster II. You will have to use either the USB Blaster Il or EthernetBlaster Il external cables.
The EthernetBlaster Il was used for this example. DHCP setup was not working so a direct Ethernet
cable connection was made between a PC and the EthernetBlaster Il. The static IP was set for the
PC network card to 198.162.0.1. The EthernetBlaster Il was accessed via a browser and then the
IP address was changed to a static IP that matched the network. The new IP address was used as
the Server name.

2. Power on the board and the programming cable box.
3. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the i icon on the toolbar.

4. The Programmer dialog appears, click on the “Hardware Setup” button.

5. Click the Add hardware button, select the Hardware type and fill in any remaining
information, and click OK.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

19



Rev 1.3

AAnnabooks-

N

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming

hardware setup applies only to the current programmer window.

Currently selected hardware: | No Hardware

Add Hardware

B

Hardware type: EthernetBlaster
Add Hardware...

Port:

Remove Hard

I

Baud rate:

Server name:

Server port: 1309
Server password:

Auto Detect OK Cancel

Close

6. The tool allows you to connect to a number of programming cables. We need to select the
one for our board. In the “Currently selected hardware”, click the drop-down and select the
hardware cable for the board, and click Close when finished

. Hardware Setup

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming

hardware setup applies only to the current programmer window.

Currently selected hardware: | EthernetBlasterll on 192.168.1.198 [EthernetBlasterl(] v

Hardware frequency: Hz

Available hardware items
Hardwars Server Part Add Hardware...

EthernetBlasterll 192.168.1.... EthernetBL..
Remove Hardware

Close

7. A NIOS2timer_time_limited.sof file gets created during the Compile Design flow. The file
is automatically filled in. There is only one FPGA on the board and in the JTAG chain so
the file already has the Program/Configure checkbox checked. Click the Start button to
program the board. The process takes a few seconds and shows that the task was

completed successfully.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

20



JAinnahooks: Rev 1.3

Note: The reason for the “time_limited” in the name of the .sof file is that we chose a Nios II/f, which
requires a license. The design must be connected to the JTAG cable or the system will shut off
after an hour.

% Programmer - E/FPGA/Intel_Max_10_FPGA_Evaluation_Kit/NIOS2_ADC/NIOS2adc - NIOS2adc - [NIOSZadc_time limited.cdf]
File Edit View Processing Tools Window Help L‘"’ h Intel FEGA )
;Hardware Setup. | on 192.168.1.198 [EthernetBlasteril] Mode: | JTAG - Progress: :}
Enable real-time ISP to allow background programming when available
o File Device Checksum  Usercode | Program/  Verfy Blank-  Examine  Security
Pbstart
Configure Check Bit
il < output files/NIOS2adc... 10MOBSAE144 002F3207  002F3207 v

top
8 Auto Detect
Delete
" Add File
P Change File
A save File

* Add Device
g

" pown

A dialog will appear that the design is time limited to one hour. The design can always be reloaded
when the timeout occurs.

S

OpenCore Plus Status

Design contains one or more time-limited OpenCore Plu

Time remaining: 00:58:56

Close

Important: This dialog acts as a tether to the time-limited IP. You must leave this dialog running
while you are running applications.

1.1.5 Deploy the Application and Other Tests
With the design loaded and the connection to JTAG up and running, we can test the application.

1. From the Quartus menu, select Tools-> Nios Il Software Build Tools for Eclipse.

2. Open the main.c application.

3. Right-click on timerTest and select Run As->Nios || Hardware. The program will load and
start running.

The first 3 LEDs will turn on and after the alarm goes off, the LEDs will change to an on-off-on-
off-on pattern. The application continues to run in the loop, but the alarm is done.

4. Edit main.c at line 24, and change the return from 0 to 3000.
5. Save the main.c file.
6. Rebuild the application.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

21



Ainnabagks- Rev 1.3

7. Right-click on timerTest and select Run As->Nios || Hardware. The program will load and
start running.

The first 3 LEDs will turn on and after the alarm goes off, the LEDs start flashing the two patterns

periodically every 3 seconds. If we had alt_arlam_stop() in the code somewhere, this would stop
the alarm.

8. Edit main.c again at line 23, and change the return from 3000 to 0. The code is going back
to a one-shot alarm.

9. Atline 36 change the countdown value from 5000 to 300.

10. After line 38 add the following code:

for(int i = 0; i < 10; i++){
alt printf("Time stamp running $x\n", 1i);
usleep (50000) ;

}

if (alt_alarm start(&countDownAlarm, 10000, alarm callback, NULL)<O0) {
alt putstr("No System Clock Found\n");
}

11. Save the main.c file.

12. Rebuild the application.

13. Right-click on timerTest and select Run As->Nios Il Hardware. The program will load and
start running.

The alarm callback is set for a single-shot operation. Two alarms are set up for the same callback,
but for the application to NOT crash, the first alarm has to finish before the second alarm can be
set. Setting the second alarm just after the first for the same callback will crash the application. The
loop between the two alarm_start() calls provides some delay. You will see the LEDs go through
the pattern once and then the alarms are no longer set. This demonstrates that an alarm callback
can be reused after it has been triggered.

If you want, you could create a different callback for the second alarm, that puts out a different LED
pattern.

1.1.6 Eclipse Application: Timestamp
This second application will demonstrate the timestamp functionality of the Interval Timer.

From the menu in Eclipse, select File->Nios Il Application.
Enter the project name timerTest2.

For the BSP Location, click on the 3 dot button.

Select timerTest_bsp and click OK.

N =

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

22



Rev 1.3

AAnnabooks-

= Nios Il Application

Nios |l Application

Create a new Nios || Software Build Tocls application project

Project names | timerTest2 |

BSP location: | E\FPGA\Intel_Max_10_FPGA_Evaluation Kit\NIOS2_Timer\software\tin| D

Create...
[+] Use default location

Location: | ENFPGAMIntel_Max_10_FPGA_Evaluation_Kit\NIOS2_Timersoftwaret

Additicnal arguments:

Command:

| nios2-app-generate-makefile.exe --app-dir . --bsp-dir ../timerTest_bsp --elf-name = |

Use relative path

@' Finish Cancel

5. Click Finish.

6. Now, we need to edit the BSP to change timer_0 to be assigned as a timestamp_timer.
Right-click on timerTest_bsp and select Nios 1I->BSP Editor.

7. Change sys_clk_timer to none.

8. Change timerstamp_timer to timer_0.

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

23



AAnnabooks-

Rev 1.3

Flle Edit Tools Help
Software Packages Drivers Linker Script  Enable File Generation Target BSP Directory
SOPC Information file:  E:\FPGAMIntel_Max_10_FPGA_Evaluation_Kit\NIOS2_Timer\NIOS2timerMCL. sopcinfo
CPUname: nios2
Operating system:  Altera HAL Version: | default ~
BSP target directory: E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\WIOS2_Timer\software\timerTest_bsp
E-Settings || hal -
E-C :
ED_I:"T;D” sys_clk_timer. none
sys_ck_timer timestamp_timer -
-timestamp_timer . INELL
stdin stdin: i v
—erdout jtag_uart_0
--stderr stdout jtag_uart 0 ~
--enable_smal_c_library R
--enable_gprof stderr: jtag_uart_0
-enable_reduced_device_drivers
--anable_sim_optimize enable_small_c_library
inker
-enable_exception_stack [ enable_gprof
exception_stack_size enable_reduced_device_drivers
-exception_stack_memory_region_r . .
enable_interrupt_stack [ enable_sim_optimize
‘interrupt_stack_size hallinker
“interrupt_stack_memary_region_nz »
< > [ enable_exception_stack ©
Information  Problems Processing
() Loading drivers from ensemble report. A
(@ Mapped module: “rios2” to use the default driver version.
@ Mapped module: "timer_0" to use the default driver version,
@ Mapped module: "pio_0" to use the default driver version.
@ Mapped module: “sysid_gsys_0" to use the default driver version.
@ Mapped module: “jtag_uart_0" to use the default driver version.
(@ Finished loading drivers from ensemble report.
() Loading BSP settings from settings file.
() Finished loading SOPC Builder system info file "E:\FPGA\Int=l_Max_10_FPGA_Evaluation_Kit\WIOS2_Timer |NIOS2timerMCL. sopcinfo” "]
Generate Exit
9. Click Generate.
10. Click Finish.
11. Right-click on timerTest2 and select New->File.
12. Name the file main.c and click finish.
13. Add the following code to main.c:
gl #include "sys/alt stdio.h"
2. #include "system.h"
3. #include "priv/alt busy sleep.h"
4. #include "sys/alt sys wrappers.h"
S #include "altera avalon pio regs.h"
6. #include <sys/alt timestamp.h>
7 #include <sys/alt alarm.h>
8.
9.
10. int main()
11. {
12.
13. alt putstr("Timer test\n");
14. IOWR ALTERA AVALON PIO DATA(PIO O BASE, 0x18);
15.
16. alt u8 timestampavailable = 0;
17. alt u32 timeBefore, timeAfter, timerOverhead, totalTicks;
18.
19. if (alt timestamp start () <O0) {
20. alt putstr("No timestamp timer found\n");
21. }
22. else(
23. timestampavailable = 1;
24. timeBefore = alt timestamp();

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

24



Rev 1.3
Annabsoks-
25. timeAfter = alt timestamp();
26. timerOverhead = timeAfter - timeBefore;
27. }
28.
29. //Test the time stamp functionality.
30. if (timestampavailable) {
31.
32. timeBefore = alt timestamp();
33. for(int i = 0; i < 10; i++){
34. alt printf ("Time stamp running %$x\n", 1i);
35. alt busy sleep (6000);
36. }
37. timeAfter = alt timestamp();
38.
39. totalTicks = timeBefore-timeAfter-timerOverhead;
40.
41. alt printf ("Total number of ticks in Hex to run the loop:
$x\n", totalTicks);
42,
43. }
44 . while (1) {
45.
46. usleep (5000) ;
47. }
48.
49, return 0;
50. }

The application tests the number of timer-ticks it takes to run through the for-loop at lines 33-36.
The application sets up the variables to be used to get the time stamp before and after the loop
runs. Before it can perform the test, the overhead of performing both timestamp operations is
calculated. The test is performed and the resulting number of ticks is presented as a hex value.

14. Save the application.
15. Build the application.
16. With the design’s sopc file programmed to the FPGA, run the application.

The application simply outputs from the loop and posts the result. Timestamps can be helpful when
diagnosing code that is time critical.

[*] Problems J=| Tasks [E) Console | ¥ Nios Il Consale 5% |[] Properties <" Search =g Progress
timerTest2 Mios II Hardware configuration - cable: EthernetBlasterIl on 192.168. 1. 198 [EthernetBlasterIl] device ID: 1instance

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

Timer test

atamp
stamp
stamp
Jtamp
stamp
atamp
stamp
stamp
Jtamp
stamp

running
running
running
running
running
running
running
running
running
running

e = VT 4 3 D S L D N R e

[V o)

Total number of ticks in Hex to run the loop: ££522730

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

25



Ainnabagks- Rev 1.3

17. When finished close Eclipse, the OpenCore Plus dialog, and the JTAG programming
application.

1.2 Summary: It is About Time

As a test, you can go back to the design and add a second timer (timer_1), and then in the
timerTest_bsp edit the BSP to have one timer be the sys clk timer and the other be the
timestamp_timer. A single application can support both alarms and timestamps.

1.3 References
The following references were used for this article:

Nios® Il Processor: Hardware Abstraction Layer Exercise Manual, Intel Corporation,

Nios® Il Software Developer Handbook, V21.3, Intel Corporation, 10/4/21

Copyright © 2023 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

26



