Annabsoks: revi e

Nios® Il ADC Implementation on Intel® MAX® 10-10M08

Evaluation Kit
By Sean D. Liming and John R. Malin
Annabooks, LLC. — www.annabooks.com

November 2022

As one digs into all the features of the Intel MAX 10, the Analog to Digital Converter, ADC, provides
a nice multi-channel solution for audio applications. Add the ADC to a Nios Il processor design and
you can write applications that can process analog data to perform other functions. The only catch
is the lack of examples on how to use the Nios Il HAL API to access the ADC. Internet search
results provide limited examples and those examples shared are based on older versions of the
development tools and software implementations. This paper’s hands-on exercises look to provide
solutions based on the latest Quartus release.

The Intel Max 10 10M08 Evaluation Kit will be used as the target for this project. The evaluation kit
is a bare-bones platform that provides the basics for learning FPGA development. The smaller
number of logic elements and RAM blocks in the Intel Max 10 means that a design is going to be
tight and the small C library has to be used for application development. The platform makes it ideal
for learning how to design and program with limited resources.

The design will take advantage of what the board provides. The system will read the voltage from
the 10Kq trimmer pot and turn on red LEDs based on the voltage level. As the trimmer pot is
adjusted from Ov to 3.3V the LEDs will be turned on or off based on the voltage level. A signal
generator can be used if the 10Ka trimmer pot is not populated on the board. The JTAG will act as
a UART for standard output so you can see the ADC values. Two different applications will be
developed. One will be a single shot reading of the ADC, and the other will be a continuous-reading,
interrupt-driven application.

Please see the article Intel® Quartus® Prime Lite and Nios® Il SBT for Eclipse Installation
Instructions on Annabooks.com to install the software needed for this hands-on exercise.

The Project Requirements:

e Intel Quartus Prime Lite Edition V21.0 and Nios® Il SBT for Eclipse already installed.
e Intel® MAX® 10 - 10M08 Evaluation Kit and the schematic for the evaluation board is
required. The schematic PDF file can be downloaded from the Intel FPGA website.
o A populated 10KQTrimmer pot for R94 on the schematic, part number 3362P-1-
103TLF.
o Alternative: Signal generator or other small analog signal source.
¢ Intel FPGA Programming cable — USB Blaster Il or EthernetBlaster Il. The Intel® MAX®
10 - 10M08 Evaluation Kit doesn’t have a built-in USB Blaster Il onboard.
o Intel® Quartus® Prime Lite and Nios® Il SBT for Eclipse Installation Instructions on
Annabooks.com

Note: There are equivalent MAX 10 development and evaluation boards available. These boards
can also be used as the target, but you will have to adjust to the available features on the board.
Please make sure that you have the board’s schematic files as these will be needed to identify pins.

1.1 Nios Il ADC Project
The custom MCU will comprise the following IP blocks:

e Nios Il processor

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

http://www.annabooks.com/
https://www.annabooks.com/Articles/Articles_FPGA/Intel-FPGA-Tools-Setup-Rev1.1.pdf

ﬁ__ 1" -“-’ ks"_ Rev 1.4

Onchip RAM

ADC

Phase Lock Loop (PLL)
Timer

Sys ID

JTAG UART

1.1.1 Create the Project
The first step is to create the design project.

1. Open Quartus.
2. Click on the New Project Wizard.

New Project Wizard “ Open Project

Compare Editions Buy Software Support What's New Notifications

Tutorial Video:

3. Click Next to the Introduction dialog.
4. Select or create a project directory \NIOS2_ADC (Do not use the Quartus installation
directory) and name the project: “NIOS2adc”. Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project
directory is a separate path from the Quartus installation files. Also, there can be no spaces in the
name of the folders or projects.

5. Project Type: Empty project, click Next.

6. Add File: no files to add, click Next.

7. Family, Device & Board Settings: click the Board tab and select: MAX 10 FPGA 10M08
Evaluation Kit and click Next.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

AAnnabgoks-

Rev 1.4

® NewP roject Wizard

Family, Device & Board Settings

Device Board

Select the board/development kit you want to target for compilation

Family: | MAX 10 * | Development Kit: | Any =
Ayailable boards:

MName Version Family Device Vendor

EH Arrow MAX 10 DECA 0.9 MAX 10 TOMSODAF4B4CEGES Arrow 497¢
EH eeMicro MAX 10 FPGA Evaluation Kit 1.0 MAX 10 TOMOBDAF4B4CEGES Arrow 80864
EH Max 10DET0- Lite MAX 10 10MS0DAF484CEGES Altera 497¢
a MAX 10 FPGA 10M08 Evaluation Kit - MAX 10 TOMOBSAET44CBGES E
EH max 10FPca Development Kit MAX 10 TOMS0DAF256CTG Altera 497¢
EH Max 10 NEEK 1.0 MAX 10 TOMS0DAF484I7G Terasic 497¢
==:] Odyssey MAX 10 FPGA Kit 1.0 MAX 10 TOMOBSAUTE9CEGES Macnica ... 80864
1 b
V| Create top-level design file.
Can't find your beard? Check the Design Store for additions and search for baseline under Design Examples.

Help < Back Mext > Finish Cancel

8. EDA Tools: click Next.
9. Summary: click Finish

Note: The actual MAX 10 on our board is the 10MO8SAE144C8G, thus it is not an Engineering
Sample (ES). The next two steps change the device to the production device. Depending on the
hardware that you use, your experience might be different. These next two optional steps change

the device.

10. In the project navigation pane on the left, right-click on 10: 10M08SAE144C8GE, and select

Device from the context menu.

11. In the Available devices, scroll down and select the 10M0O8SAE144C8G, click OK.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

JAinnahooks: Rev 1.4

& Device

Device Board

Select the family and device you want to target for compilation.

You can install additional device support with the Install Devices command on the Tools menu.

To determine the version of the Quartus Prime software in which your target device is supported, refer to the Device Support List webpage.

Device family Show in ‘Available devices' list
Eamily: | MAX 10 [DA/DF/DC/SA/SC/5L) - Package: 'An}, - |
Device: | All M Pin count: Any 1
Target device Core speed grade: | Any -
Mame filter:

Auto device selected by the Fitter

®' specific device selected in "Available devices' list V| show advanced devices

Other. nfa
Device and Pin Options...

Ayailable devices:

Name Core Voltage Es Total 1/Os GPI0s Memory Bits Embedded multiplier 9 bitelem
_-__
T0MOBSAET44CBGES 3.3V 8064 101 101 387072
TOMOBSAE14417G 3.3V 8064 10 10 387072 43
“InMan.nF'IAdI?D kY RORA 1M 107 3ATNT2 a8 x

Migration Devices... | 0 migration devices selected

iW Buy Software ' oK Cancel Help

1.1.2 Create the Design in Platform Designer

Quartus supports many design types to create an FPGA design. The Platform Designer tool will be
used for this hands-on exercise. Platform Designer makes it easy to add already-built IP blocks
and interconnect them.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon
from the toolbar.

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform
Designer makes it easy to add IP blocks and make interconnections between the blocks.

2. The top left pane contains the IP Catalog with all the available IP blocks that come with
Quartus Prime. In the search box, type Nios.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabgoks- revi e

% Ip Catalog % ==
, NIDS X K
P_roject
L.l New Component...
Library

E--Basic Functions
' E}--Simulatin:nn; Debug and Verification
=1-Simulation
® Mios IT Custom Instruction Master BFM Intel FPGA IR
‘.. ® Nios II Custom Instruction Slave BFM Intel FPGA IP
EI -Processors and Peripherals
D Co-Processors
EI NII:IS II Custom Instructions
¢ @ Bitswap
#& Custom Instruction Interconnect
® Custom Instruction Master Translator
- ® Custom Instruction Slave Translator
® Floating Point Hardware
— Floating Paint Hardware 2
= Emhedded Processors

LS B¥'lios 1T Processor

Mew... | Edit... o= Add...

3. Expand the Processors and Peripherals and Embedded Processors branches and double-
click on the Nios Il Processor.

4. This will open the Nios Il Configuration page. The first tab is to select the type of core Nios
[I/e or Nios Il/f. We will keep the defaults for now. Click Finish.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

5

Annabsoks: revi e

Nios II Processor
Mt dltera_rios2_gen2

“Documentation

] how signsis Main | Vectors Caches and Memory Interfaces Arithmetic Insiructions | MMU and MPU Settngs JTAG Debug | Advanced Features

|~ selact an
nios2_gen2 0 Nios ILCore: () nios 1fe
K dsta_master © s 0t
et struction_mast : :
= e Nios II/e Nios I1/f
debug reset
X i [ooel |20 Summary || Resource-optimized 32-bit RISC Performance-optimized 32-bit RISC
lebug_mem_slave: custom_insiruction_master,
os _custom_i Features || JTAG Debug JTAG Debug
e gons ECC RAM Protection Hardware Multiply/Divide
= Instruction/Data Caches
Tightly-Coupled Masters
ECC RAM Protection
External Interrupt Controller
Shadow Register Sets
TPU
MMy
RAM Usage 2 +Options 2+ Options

@ Error: nios2_gen2_0: Instruction Cache is larger than the Instruction Address, Please reduce the Instruction Cache Size. Current Tag Size is 0
3 Error: nios2_gen2_0: Reset slave is not specified. Please select the reset siave
) Error: mios2_gen2_0: Exception siave is not spedified. Please select the exczption iave

Cancel Finish

1. The processor will be added to the design. Right-click on the name nios2_gen2_cpu, and
rename it to nios2.

Now let’'s add the RAM IP block. In the IP Catalog enter RAM in the search box.
Double-click on On-chip Memory (RAM or ROM) in the Intel FPGA IP.

wn

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annahgoks- rev 1

% IP Catalog % e
|, RAM | K
P_ruject LY
..l New Component...

Li_brar\r

EI--BE_ISi:: Functions
E}--Dn Chip Memory
L B _n-Chip Memory (RAM or ROM) Intel FPGA IP

=-DSP
=-Videa and Image Processing

‘.. ® Frame Buffer II (4 Ready) Intel FPGA IP
[=-Memary Interfaces and Controllers

=-Memory Interfaces with AltMemPHY
L
E}--Memnry Interfaces with LniPHY
... » DDR2 SDRAM Contraller with UniPHY Intel FPGA IP
® DDR3 SDRAM Controller with UniPHY Intel FPGA IP
® |PDDR.2 SDRAM Contraoller with UniPHY Intel FPGA IF

.
.
...... []
[=-University Program
=-Clock v
£ >
MNew.., | Edit... o= Add...

4. The configuration page will appear. Change the Total memory size to 16384. We need
more memory to run this application.

[~ size
Enable different width for Dual-port access
Slave 51 Data width: 33 .
Total memory size: 16384 bytes

Minimize memary block usage (may impact fmax)

[~ Read latency

5. Uncheck the box for “Initialize memory content” and click Finish.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

AAnnabooks-

Rev 1.4

[~ Memory initialization

[fnitialize memory content

Enable non-default initizlization file

User created initizlization file: onchip_mem.hex

Enable Partial Reconfiguration Initialization Mode

In the IP Catalog search box, type adc.

File Edit System Generate View Tools Help

Type the filename (e.g: my_ram.hex) or select the hex file using the file browser button

EI ‘Processors and Peripherals
=" Perlpherals

% WModular ADC core Intel FPGA IP

#® Modular Dual ADC core Intel FPGA IP
EI L.Inl'u'ermty Program

= Gn_eneru: 10

#® ADC Confroller for DE-series Boards

IPCatalog % - =
-, adc X ﬂ:
iject

L.l New Component...

Lil:rriirvnr

Mew, .. Edit...

o= add...

The On-chip Memory (RAM or ROM) in the Intel FPGA IP will be added to the design
Right-click on the name, and rename it to onchip_RAM

8. Expanding the branches reveals the available IP. Double-click on Modular ADC core Intel
FPGA IP. This will add the ADC IP to the design and open the Modular ADC core Intel

FPGA IP configuration page.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners

Annah

—

coks-

Rev 1.4

“ Modular ADC core Intel FPGA IP

Mogecaewt 3ltera_modular_adc Documentation
E I enera
[Show signals =
- Core Variant: Standard sequencer with Avalon-M sample storage -
)
mEEHHLES Debug Path: Disabled
lock sample_store_ir =
Jeset_sink et ADC Sample Rate: 1Mhz o
de_pll_ciock ADC Input Clock: T
de_pll_locked [~ Refe tage
equencer_csr Reference Voltage Source: Ty
ample_store_csr External Reference Voltage: 25 v
atera_modlar_ade E
Enable user created expected output fle: |Disapled +
Chamnels Sequencer
CHOY CcH1 CHZ CH3 CH4 CHS CHE CH7 CHB TSD
[~ Channel 0
[[J Use Channel 0 (Dedicated analog input pin - ANAIN)
(@ Error: modular_adc_0: Sequencer Slot 1is pointing to Channel which is not available in current selected device part, Please re-configure Sequencer Slot 1,
., warning: modular_adc_o: Error converting csd slot value 30 to string output code.

9.

Inthe G

~PooTD

g.

eneral tab, set the following:

Core Variant: Standard sequencer with Avalon-MM sample storage.
Debug Path: Disabled.

ADC Sample Rate: 1 MHz.

ASC Input Clock: 10 MHz.

Reference Voltage Source: External.

Internal reference Voltage: 3.3V.

Enable user-created expect output file: Disabled.

The ADC IP block supports several implementation variants. The one chosen will use the MAX 10’s
internal RAM to save the data. The evaluation kit has a 2.5 V reference voltage for the ADC, but
the 10K trimmer pot can supply 3.3 to the channel so we will use the internal 3.3V.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annahgoks- rev 1

——

General
|~ Core Configuration

Care Variant: Standard sequencer with Avalon-MM sample storage ~

Debug Path: Disabled -~
[Clocks

ADC Sample Rate: 1Mhz

ADC Input Clodk: 10 Mhz -

[~ Reference Voltage

Reference Voltage Source: Internal

L

Internal Reference Voltage: 3.3 w |V

[* Logic Simulation

Enable user areated expected output file: | pisabled

Channels Sequencer

CHI CH1 CH2 CH3 CH4 CHS CHE CH7 CH8 TSD

[+ Channel 0
[]use Channel 0 (Dedicated analog input pin - ANAIN)

10. In the Channels tab, click on CH7, and check the “Use Channel 7” box

Channels Sequencer

CHO CH1 CHZ CH3 CH4 CHS CH& CHY CH& TsD

[* Channel 7
Use Channel 7

11. Click on the Sequencer tab.
12. Set the number of slots used to 1.
13. Set Slot 1: to CH7

Channels Sequencer

[* Conversion Sequence Length
Mumber of slotused: | ..

|* Conversion Sequence Channels
Slot 1: CHT

b

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

10

Annabsoks: revi e

14. Click Finish.

15. The ADC will be added to the design. In the System Contents, you will see the ADC has
been added to the list of devices to be interconnected. Right-click on the name and rename
the device to ADCO.

16. Now we need to add the PPL. In the IP Catalog, type pll in the search.

17. A number of different PLLs appear in the branches, but only a few are available. Double-
click on the ALTPLL Intel FPGA IP to add it to the design.

1 e Platform Designer - unsaved.qgsys FP

-
[= 3% K 3 3 .

1File Edit Systemn Generate View Tools Help

o X A
| Project ~
{ .l New Component...

[L'!hrar\r

4| | =-Basic Functions
E}--Clm:ks; FLLs and Resets
E-PLL
® ALTPLL Intel FPGA IP
® ALTPLL RECONFIG Intel FPGA TP

e
[—:I---Ir!terface Protocols
E}--Tr_ans-:eiver PLL

L W L
MNew.., | Edit... &= add...
..] e =1

18. The PLL is added, and the ALTPLL Intel FPGA IP configuration page appears. The
configuration page has a workflow-like presentation, 1 Parameter Setting contains the
general settings for the PLL. For the “What is the frequency of the inclk0O input?” set the
value to 50.000 MHz. The evaluation kit has a 50 MHz oscillator.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

11

Annabsoks: revi e

MegaWizard Plug-In Manager [page 1 of 11]

Parameter

Settings

GeneralModes ; InputsfLock Bandwidth/55 ’ Clock switchover

Currently selected device family: [0 10

ALTPLL1656643596187884)
Iv Match project/default

Able to implement the requested PLL

General

Which device speed grade will you be using? Any h

™ Use military temperature range devices only

What is the frequency of the indk0 input? |SD.DDD |MHz j
™ Setup PLL in LVDS mode Datarate: |MNot Available Mbps

PLL Type

19. Click Next.

20. Uncheck the box next to “Create an ‘areset’ input to asynchronously reset the PLL”. This
signal is not needed for this design, and this will remove one warning from the list. Leave
Create ‘locked’ output checked.

Z9 ALTPLL

Bandwidth/55 Clock switchover

Able to implement the requested PLL

Optional Inputs

I™ Create an 'pllena’ input to selectively enable the PLL
[Create an 'areset input to asynchronously reset the PLL
[Create an ‘pfdena’ input to selectively enable the phase ffrequency detector

Lock Qutput
[+ Create locked' output

I Enable self-reset on loss lock

Advanced Parameters
Using these parameters is recommended for advanced users only

™ Create output file(s) using the "Advanced' PLL parameters

21. Click on 3, Output Clocks tab.

22. There are 5 output clock settings. All we need is clk c0. Under clk cO, click the radio button
next to Enter output clock frequency.

23. Set the Requested Settings to 10.00 MHz. This is to match the input clock frequency of the
ADC.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

12

Annabsoks: revi e

MegaWizard Plug-In Manager [page 6 of 11]

c0 - Core/External Output Clock
Able to implement the requested PLL
[v Use this dock
Clock Tap Settings =
Requested Settings Actual Settings
(* Enter output dock frequency: |10.00000000 [MHz x| | 10.000000
(" Enter output dock parameters:
> 1
Clock multiplication factor L El
= << Col ,7
Clock division factor 1 El ki 5
Clock phase shift |D.DD :I |deg j |U.DD
Clock duty cydle (%) 50,00 =] 50.00
| romeitinm [ol

24. Click Finish.

25. The PLL is added to the design. Rename the PLL as pll_0.
26. In the IP Catalog search, enter timer.

27. Double-click on the Interval Timer Intel FPGA IP.

M 1p Catalog 3% -=£ 8
L, timer X q
P_miect
il New Component..
Li_bl'al"f

B-Pr_ocessnrs and Peripherals
=-Peripherals

. B [rterval Timer Intel FPGA IP

28. Keep the settings as they are and click Finish.
29. In the IP Catalog search, enter system ID.
30. Double-click on the System ID Peripheral Intel FPGA IP.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

13

Annabsoks: revi e

™ P Catalog F =
L, sYs *| K&
P_ruject

L.l New Component...

L'|_I.'rriir1||r

[=I-Basic Functions
E}--Simulaﬁon; Debug and Verification
EI--DEI::ug and Performance
‘. ® Intel FPGA In-System Sources & Probes
#® SLD Hub Controller System
L= =tem ID Peripheral Intel FPGA IP
- @ Trace System
[=-Processors and Peripherals
E}--H_ard Processor Systems
E—_

I';'l--Uljiversity Program
E}--Cl_l.‘:dc
i @ System and SDRAM Clocks for DE-series Boards

31. A configuration page will appear. There are no changes to be made. Click Finish.
32. In the IP Catalog search, enter uart.
33. Double-click on the JTAG UART Intel FPGA IP.

M Ip Catalog &% =

4, uart * Q
Project
Lol New Component...
Library
El-Interface Protocols
{ EhSerial
16550 Compatible UART Intel FPGA IP
S TTAG UART Intel FPGA IP
‘@ LUART (R5-232 Serial Port) Intel FPGA IP
é--University Program
é--Communicaﬁons
L ® IrDA UART
- @ R5232UART

Mew... | | Edit... = Add...

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

14

Rev 1.4

#Annabsooks-

34. A configuration page will appear. There are no changes to be made. Click Finish.
35. In the IP Catalog, enter pio in the search box.
36. Add the PIO (Parallel I/0) Intel FPGA IP to the design.

% Ip Catalog 3 ==
L IO X K
P_ruiect
il New Component...
Library

=-Interface Protocols
: E} -PCI Express
=- QSYS Example Designs
: e
EI--Pru:u:essu:urs and Peripherals
=-Peripherals

SO0 (Parallel 1/0) Intel FPGA IP

37. In the configuration page, set Width to 5, leave the Direction as Output, and set the Output
Port Reset Value to 0x1f. Since the LEDs are active low, the value turns all 5 LEDs off on

startup.
38. Click Finish.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

15

Annabsoks: revi e

- PIO (Parallel 1/0) Intel FPGA IP - pio_0

“ PIO (Parallel 1/O) Intel FPGA IP

MagaCers® altera_avalon_pio

[~ Block Diagram |

L3

[~ Basic Settings
[[] show signals Width (1-32 bits): 5
piu 5 Direction: O Bidir
(O Input
Ik
lock o InOut
eset
reset (® Output
1 valon Output Port Reset Value: |gypoooo000000000 1f
xternal_connection onduit
[~ Output Register
ahtera_avalon_pio] Enable individual bit setting/dearing

|~ Edge capture register

Synchronously capture

Edge Type: RISING

Enable bit-clzaring for edge capture register

[~ Interrupt
Generate IRQ

IRQ Type: LEVEL

Level: Interrupt CPU when any unmasked IO pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

39. The PIO will be added to the design. Rename the PIO to pio_0.

40. For the PIO exernal_connection, under pio_0, double-click on the "Double-click to export”
in the exernal_connection row and Export column and set the value to led5. This will
provide a base name for connecting the signals to the PINs on the chip. The connection
will be made in PIN Planner.

41. Now we need to wire the IP blocks together. The picture below shows all the wiring
connections for the design.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

16

Annabsoks: revi e

I:: System Contents 2@] Address Map 2% | Interconnect Requirements &3

x| a Q System: NIO52adcMCU Path: pio_0.dk

* |Use Connections Name Description Export Clock
L | B dk_0 Clock Source
x we ck_in Clock Input clk exported
B C— ck_in_reset Reset Input reset
: 4 dk Clock Output dk_0
a dk_reset Reset Output
-~ B 1 nios2 Mios IT Processor
v ck Clock Input clk_0
¥ reset Reset Input [clk]
—_— data_master Avalon Memory Mapped Master [clk]
—_— instruction_master Avalon Memory Mapped Master [clk]
—_— irg Interrupt Receiver [clk]
debug_reset_request [Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk]
custom_instruction_m. .. [Custom Instruction Master
= onchip_RAM On-Chip Memory (RAM or ROM) Intel ...
dk1 Clock Input clk_o
sl Avalon Memory Mapped Slave [clk1]
resetl Reset Input [clk1]
B adc_0 Modular ADC core Intel FPGA IP
dock Clock Input clk_o
reset_sink Reset Input [clock]
adc_pll_dock Clock Input pll_0_c0
adc_pll_locked Conduit
SEQUENCEr_CSr Avalon Memory Mapped Slave [clock]
sample_store_csr Avalon Memory Mapped Slave [clock]
sample_store_irg Interrupt Sender [dock]
= pll_o ALTPLL Intel FPGA IP
indk_interface Clock Input clk_0
inclk_interface_reset |[Reset Input [inclk_interf...
pll_slave Avalon Memory Mapped Slave [inck_interf...
— fui] Clock Output pll_o_co
locked_conduit Conduit
B timer_0 Interval Timer Intel FPGA IP
dk Clock Input clk_o
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk]
— irq Interrupt Sender [clk]
= sysid_gsys 0 System ID Peripheral Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clk]
= jtag_uart_0 ITAG UART Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk]
~—— irq Interrupt Sender [clk]
= pio_0 PIO (Parallel 1jO) Intel FPGA IP
Clock Input Double-click to export
* l reset Reset Input [clk]
- sl Avalon Memory Mapped Slave [dk]
o external_connection Conduit led5

42. Let's assign a base address. From the menu, select System->Assign Base Address. This
will remove a number of errors from the message box. You will see the base address values
for each IP change in the System Contents tab.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

17

Rev 1.4
Annabgoks-

Platform Designer - unsaved.gsys™ (E\FPGA\Intel_Max_10_FPGA_Evaluatis

File Edit Systern Generate View Tools Help
el Upgrade IP Cores... I:—c .S‘j'
Assign Base Addresses |
w 5YS i
! Assign Interrupt Numbers
Projec 4 ¢ + |0
- | Assign Custom Instruction Opcodes !
Library Create Global Reset Metwork boo
Ei"BE_IS E
= Show Systern With Platform Designer Interconnect =
=
Remove Dangling Connections & l
. v
Import Interface Requirements...
=W TdCE 3YSIEN T

43. Finally, let’'s set the reset and exception vector addresses. Double-click on the nios2 to
open the configuration page.

44, Click on the Vectors tab.

45. Change the Reset vector memory drop-down to onchip_ RAM.s1.

46. Change the Exception vector memory drop-down to onchip_ RAM.s1.

4 parameters &3 -r

System: NIOS2adcdMCU Path: nios2

Nios II Processor ﬂ
e tail

altera_nios2_gen2

Main Vectors Caches and Memory Interfaces Arithmetic Instructions MMU and MPU Settiny

|' Reset Vector

Reset vector memory: onchip_RAM.s1 e
Reset vector offset: 000000000
Reset vector: 0x00004000

|' Exception Vector

Exceplion vector memory: onchip_RAM.s1 ~
Exception vector offset: 0x00000020
Exception vectar: 0x00004020

|~ Fast TLB Miss Exception Vector
Fast TLE Miss Exception vector memory: |pjone

Fast TLE Miss Exception vector offset: | gx00000000
Fast TLE Miss Exception vector: 0x00000000

47. Click on Generate HDL...

48. Keep the defaults and click the Generate button.

49. A dialog will appear asking you to save the design, click Save.

50. Give the name as NIOS2adcMCU.qgsys, and click Save.

51. Once the save has completed, click Close.

52. The generate process kicks off. The processes should succeed, click Close.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

18

nna"uoks Rev 1.4

-.----l'

53.
54.
55.
56.

57.

58.
59.

60.

61.
62.

63.

Click Finish to close the design.

Quartus then reminds you to add the new design to the project. Click Ok.
In the Project Navigator, click on the drop-down and select Files.
Right-click on Files and select Add/Remote Files in Project.

Project Navigator = Files »* G 0@ &

i Add/Remove FEiles in Project...

A Settings — NIOS2adc page appears with Files on the left highlighted. Click the three dots
browse button for File name, and navigate to the \NIOS2_ADC\NIOS2adcMCU\synthesis
folder.

Click on the NIOS2adcMCU.qip file and click open.

Click OK to close the Settings- NIOS2adc page. The qip file is added to the Project
navigator list. Underneath are all the Verilog files that were generated by Platform
Designer.

Project Navigator E| Files Q[R@ e

e &

@ MIOS2adcMCUfsynthesis/NIOS2adcMC U gip

MIOS2adcMC U synthesis/NIOS2adcMC ULy
MIOS2adcMC U synthesis/submodules faltera_reset
MIOS2adcMC U/ synthesis/submodules faltera_reset

MIOS2adcMC U synthesis/submodules faltera_reset_

|
=]
=l

MNIOS52adcMC U synthesis/submodules (NIOS2adeM(

[y]

NIOS2adcMC U synthesis/submodules (NIOS2adcM(
MNIOS2adcMC U synthesis/submodules (NIOS2adcM(
NIOs2adcMC U synthesis/submodules (NIOS2adcM(
MICS2adcMC U synthesis/submodules (MIOS2adcM

g MIAAE FrdebAr | Heventhacic lenilhemadinlae Falbarm rmardie

In the Project Navigator, Right-click on the NIOS2adcMCU/synthesis/NIOS2adcMCU.v file
and select Set as Top-Level Entity from the context menu.

Save the project.

In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The
analysis will take some time, and it should succeed in the end. This step helps to diagnose
any errors and finds the Node Names for the pin assignments in the next step.

Once the process completes, the pin assignments need to be set. From the menu, select

Assignments->Pin Planner or click on the 5 icon from the toolbar. The analysis just
run populated the Node Name list at the bottom of the Pin Planner dialog.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

19

Annabsoks: revi e

64. Using the board schematic, locate the pins for the SW1 and the 50MHz clock. Set the
Location values for both node names. For the MAX 10 — 10M08 Evaluation Board, these
values are as follows:

Node Name Location
SW1 PIN 121
Clk 50MHz: PIN 27
altera_reserved tck PIN 18
altera_reserved tdi PIN 19
altera_reserved tdo PIN 20
altera_reserved tms PIN 16
Led5 export[4] PIN 141
Led5 export[3] PIN_140
Led5 export[2] PIN_135
Led5 export[1] PIN_ 134
Led5 export[0] PIN_132

65. Set the I/O Standard to 3.3V-LVTTL for all pins except JTAG. You can see from the
schematic that the I/O are all tied to 3.3V.

& | Named|+ ¥ | <% | Edit

i} Mode Name Direction Location 1/ Bank VREF Group Fitter Location IfO Standard
- altera_reserved_tck Input PIN_18 1B B1_NO PIN_18 2.5V Sc... Trigger
iﬁ_ altera_reserved_tdi Input PIN_19 1B B1_NO PIN_19 2.5V Sc... Trigger
- altera_reserved _tdo Output PIN_20 1B B1_NO PIN_20 25V
iﬁ_ altera_reserved_tms Input PIN_16 1B B1_NO PIN_16 25V 5c._Trigger
& cli_clk Input PIN_27 2 B2_NO PIN_27 3.3-V LVTTL
‘@ led5_export[4] Output PIN_141 8 B8_NO PIN_141 3.3-V LVTTL
‘@ leds expori[3] Output PIN_140 8 ES_NO PIN_140 3.3-V LVTTL
B led5_export[2] Output PIN_135 8 B8_NO FIN_135 3.3-V LVTTL
‘B led5_export[1] Output PIN_134 8 B8_NO PIN_134 3.3-V LVTTL
‘@ led5_export[0] Output PIN_132 8 B8_NO PIN_132 3.3-V LVTTL

E & reset_reset n Input PIN_121 8 B8_NO PIN_121 3.3-V LVTTL

<<new nadess

66. Close the Pin Planner when finished. The diagram gets updated with the pin numbers.
67. Save the project.

Note: A best practice at this point would be to make a backup of the project folder. Quartus can
crash unexpectedly, since it appears to be written in Java. Archiving is simple. From the menu,
Project->Archive Project.

68. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

Start from the context menu, or you can click on the symbol in the toolbar. The design
should compile successfully.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

20

AAnnabooks-

Rev 1.4

|

& <<Filters>

Flow Status

Quartus Prime Version
Revision Name
Top-level Entity Name
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins

Total memory bits
Embedded Multiplier 9-bit elements
Total PLLs

UFM blocks

ADC blocks

113

Successful - Sun Jul 10 18:09:58 2022
21.1.0 Build 842 10/21/2021 5J Lite Edition
NIOS2adc

MIOS2adcMC U

MAX 10

10MOESAET44CEG

Final

3,650 / 8,064 (45 %)

2174

77101 (7 %)

]

129,728 [387,072 {34 %)

6/48(13 %)

1/1(100%)

0/1(0%)

1/1(100%)

Eclipse Application 1: adcLEDLevels One Shot Read

Now, we are ready to create an application to run on the Nios Il processor. The application will
configure the ADC for a single read of the input analog signal and then light the LEDs based on the
resulting voltage value. The one-shot solution is good when you only need to take a reading once
in a while. For example, reading the TSD to get the FPGA temperature.

1. In Quartus Prime, from the menu, select Tools->Nios Il Software Build Tools for Eclipse.
Eclipse will open and ask for the root workspace directory. Set the workspace folder to
something like \Documents\FPGA\Apps, and hit ok. It doesn’t matter the location of the

workspace, since the actual
\NIOS2_UART\software folder.

applications for the project will

exist within the

3. In Eclipse, from the menu, select File->New-> Nios |l Application and BSP from Template.

= MNios Il - Eclipse
File | Edit Mavigate Search Project Run Miosll Window Help
Mew Alt+Shift+N > 54 Nios Il Application and BSP from Template
Open File... @ Mios || Application
Clee ChrlsW [E¥ Nios |l Board Support Package
Close Al CtrisShifeswy | [Niosi Library
% Project...
Save Ctrl+S
B i='<j Other... Chrl+M
Save All Ctrl+Shift+5

4. The first step is to open the SOPC file that was generated for the hardware design. Click

on the three dots button.

5. Navigate to the \NIOS2_ADC folder and open the NIOS2adcMCU.sopcinfo file. The CPU
name will reflect the name we gave the CPU in Platform Builder.

6. Enter the project name: adcLEDLevels.

7. Inthe Project Template, select Blank Project.

8. Click Finish.

Copyright © 2022 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

21

Annabsoks: revi e

= Nios || Application and BSP from Template

Nios Il Software Examples

Create a new application and board support package based on a software example
template

Target hardware informaticon

SOPC Information File name: | EAFPGANIntel_Max_10_FPGA_Evaluation_Kit\MI052_ADC\NIOS2ade

CPU name:

nios2 w

Application project

Project name: achEDLEVE|S|

Use default location
Project location: | EANFPGAMntel_Max_10_FPGA_Evaluation_Kit\NIOS52_ADCh\software\adcLEDL:

Project template

Templates Template description

Blank Project creates an empty project to which you can L)
Board Diagnostics add your code.

Count Binary

Float2 Functionality For details, click Finish to create the project and refer to the
Floatd GCC readme.txt file in the project directory.

Float2 Performance

Hello Freestanding The BSP for this template is based on the Altera HAL

Hello MicraC/05-11 operating system. To use a B5P based on a different

Hello World operating system, click Next and select the BSP from the
Helle Werld Small BSP projects list.

Memory Test

Memory Test Small For information about how this software example relates to

Mios Il hardware design examples, s

l:?:' < Back Mext > Cancel

Two projects will be generated. The adcLEDLevels _bsp is generated to give you the HAL drivers

and API based on the hardware design. The adcLEDLevels is the application that will run on the
hardware.

9. We need to edit the BSP to use the small C library. The BSP Editor tool allows you to edit
the settings.bsp file to make specific changes for the target. Right-click on
adcLEDLevels_bsp and select Nios 1I->BSP Editor from the context menu.

The BSP Editor opens and opens the settings.bsp file automatically. If you started the BSP Editor
from the main menu, you would have to manually navigate to open the file. In the BSP Editor, you
can see this is where the selection of the small_c library and reduced drivers are set. The standard
input, output, and error ports to handle messages are already set to jtag_uart 0.

10. Tick the box for enable_small_c_library and enable_reduced_device_drivers, and click
Generate to make the changes.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

22

Annabsoks: revi e

File Edit Tools Help

Main | Software Packages Drivers Linker Script Enable File Generation Target BSP Directory

SOPC Information file: E:\FPGAVIntel_Max_10_FPGA_Evaluation_Kit\NIO52_ADCNIOS2adcMCU.sopanfo
CPUname: nios2
Operating system: Altera HAL Version: | default -
BSP targetdirectory: E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\NIOS2_ADC'software\adcLEDLevels_bsp

=-Settings ~ || hal Py
= CBUH:IU” sys_clk_timer: timer_0 ~
sys_clk_timer timestamp_timer. none v
-timestamp_timer
‘stdin sidin
stdout fag_uart 0 -~
-stderr stdout jtag_uart 0 ~
-enable_small_c_library
enable_gprof siderr: jftag_uar_0 -~
enable_reduced_device_drivers
-enable_sim_optimize enable_small_c_library
=-linker
enable_exception_stack [Jenable_gprof
—exception_stack_sze enable_reduced_device_drivers
~exception_stack_memory_region_r
enable_interrupt_stack [enable_sim_optimize
~interrupt_stack_size hal.linker
~interrupt_stack_memoary_region_nz v
< > [] enable_exception_stack Vv

Information Problems Processing

(@ Generated fle "E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\MIOS2_ADC software \adcLEDLevels_bsplsettings.bsp” ~
(@ Added interrupt controller device driver for "nios2” to alt_irq_init() in alt_sys_init.c.

(@ Added device driver for “adc_0" to alt_sys_init() in alt_sys_init.c.

(@ Added device driver for "timer_0" to alt_sys_init{) in alt_sys_init.c.

(@ Added device driver for “sysid_gsys_0" to alt_sys_init() in alt_sys_init.c.

(@) Added device driver for "jtag_uart 0" to alt_sys_init()in alt_sys_init.c.

(@ Mapped section ".exceptions™ to memory region "onchip_RAM",

@ Mapped section ".entry” to memory region reset”.

(@ Finished generating BSP files. Total time taken = 2 seconds v

11. Click Exit when finished.

The adcLEDLevels_bsp contains the key files that will help with filling in the code to access the
ADC and PIO ports. System.h contains the definitions that can be used in Platform Designer to set
up the ADC and PIO. The ADC list is very long as the SampleStore and Sequencer define multiple
values.

[B] system.h 52

#define ADC_O_SAMPLE STORE_CSR_BASE 0x9000
#define ADC O SAMPLE STORE_CSR_CORE_VARIANT 0
#define ADC O_SAMPLE STORE_CSR_CSD_LENGTH 1
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_O "CHT"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_1 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_10 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_11 "CHO"
#define ADC O SAMPLE STORE CSR CSD_SLOT_ 12 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_13 "CHO"
#define ADC_O_SAMPLE STORE_CSR_CSD_SLOT_14 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_15 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_16 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_17 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_l8 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_19 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_2 "CHO"
#define ADC_O_SAMPLE STORE_CSR_CSD_SLOT_20 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_21 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_22 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_23 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_24 "CHO"
#define ADC O_SAMPLE STORE_CSR_CSD_SLOT_25 "CHO"

Since we are using the small_C_library for space reasons, the standard C io calls cannot be used.
Instead, we will be using the Nios Il HAL API to access the ADC, PIO, and standard output via the
Copyright © 2022 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

23

Rev 1.4

Annabgoks-

JTAG UART. The other header files are under the drivers\inc folder altera_avalon_adc_*.h. Each
file contains the function prototypes of the commands that will be used in the application.

i Ii?y Project Explorer 5 — G:p
=5 adcLEDLevels
v (5 adcLEDLevels_bsp [NIO52adcMCU]
i Includes
v = drivers
v [inc

altera_avalon_jtag_uart_fd.h
altera_avalon_jtag_uart_regs.h
altera_avalon_jtag_uart.h
altera_avalon_pio_regs.h
altera_avalon_sysid_gsys_regs.h
altera_avalon_sysid_gsys.h
altera_avalon_timer_regs.h
altera_avalon_timer.h
altera_modular_adc_sample_store_regs.h
altera_modular_adc_sequencer_regs.h

FEFEFEEFEREEEE

altera_modular_adc.h
(= src

= HAL

le| alt_sys_init.c

linker.h

systern.h

=| create-this-bsp

= linkerx

Makefile

mem_init.mk

=| memory.gdb

public.mk

=| settings.bsp

& summary.html

Before we move on to writing the application, we need to fix bugs that are in the generation of the
BSP. Intel has done a great job of taking the heavy HDL coding out of the design, but they forgot a
few things.

12. In the adcLEDLevels _bsp project, expand Drivers\inc, and open the altera_modular_adc.h
file. At about line 92 you will see the following:

#define ALTERA MODULAR ADC_INSTANCE (name, dev) \
static alt modular adc_dev dev =
{
{
ALT LLIST_ENTRY,
name## NAME,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
},
NULL,
NULL,
0,

P Al A A A A A A

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

24

Annabsoks: revi e

0,
name## DUAL_ADC_MODE

- -~

/*

* The macro ALTERA MODULAR ADC INIT is called by the auto-generated
function

* alt sys_init() to initialize a given device instance.

*/

#define ALTERA MODULAR ADC_INIT (name, dev) \

altera modular adc_init (&dev, name##_ IRQ INTERRUPT CONTROLLER ID,
name##_ IRQ) ;

This autogenerated file is not correct. The variable names are not set up correctly. For example,
name## NAME should actually be name## SEQUENCER_CSR_NAME. This matches the
system.h defines. Name## resolves to adc_0; the name we gave the ADC in Platform Designer.

13. Change the code to the following:

#define ALTERA_MODULAR_ADC_INSTANCE (name, dev) \
static alt modular adc_dev dev =
{

{
ALT LLIST ENTRY,
name## SEQUENCER CSR NAME,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
},
NULL,
NULL,
0,
0,
name## SEQUENCER CSR_DUAL_ADC_MODE \

-~

P A A A A A 7

/*

* The macro ALTERA MODULAR ADC INIT is called by the auto-generated
function

* alt sys_init() to initialize a given device instance.

*/

#define ALTERA MODULAR ADC_ INIT (name, dev) \

altera modular adc_init (&dev,

name##_SAMPLE STORE_CSR_IRQ INTERRUPT CONTROLLER ID,
namef#_ SAMPLE STORE_CSR_IRQ) ;

14. Save and close the file.

Note: Any time you have to update the adcLEDLevels _bsp project by generating a new BSP
because of a hardware design change, you also have to fix this file again.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

25

Annabgoks- revi e

15. We need to add a main.c file to the project. Right-click on the adcLEDLevels project, and
select New->File from the context menu.

16. Enter the file name main.c and click Finish.

17. Add the following code to the main.c file.

i, #include "sys/alt stdio.h"

2. #include "system.h"

3. #include "priv/alt busy sleep.h"

4. #include "sys/alt sys wrappers.h"

e #include "altera modular adc.h"

6. #include "altera modular adc sequencer regs.h"

K #include "altera modular adc sample store regs.h"

8. #include "altera avalon pio regs.h"

9.

10.

11. int main ()

12. {

13. alt putstr ("ADC and LED test!\n")

14.

15. alt u32 adc_slot data[64]; //There are 64 slots available

16. alt u32 slot value data;

17. int x = 0;

18. //Set all the slots to be zero

19. for(x = 0; x < 64; x++){

20. adc_slot datal[x]=0;

21. }

22.

23. adc_stop (ADC_0 SEQUENCER CSR_BASE) ;

24. adc_set mode run once (ADC 0 SEQUENCER CSR BASE) ;

25. adc_interrupt disable (ADC 0 SAMPLE STORE CSR BASE);

26.

27. adc_start (ADC_0 SEQUENCER CSR BASE) ;

28.

29. alt adc _word read(ADC 0 SAMPLE STORE CSR BASE, adc_slot data,
ADC_0 SAMPLE STORE CSR CSD LENGTH); //fill in all the slots

30. slot_value data = adc_slot _datal[0]; //CH7 is set for slot 1
(the values are off set by 1, thus 0 for the array).

31. alt printf ("ADC Value (HEX) from wrapper: %$x\n",
slot value data);

32.

33. IOWR ALTERA AVALON PIO DATA (PIO_0 BASE,Ox1F);

34.

35. //LEDs act like a level each one turns on the higher the
voltage.

36. //Since the LEDs are active low, the 0s turn them on. Saves on
having to add NOT gates for each line in the design.

37. if (slot_value data > 700) {

38. IOWR ALTERA AVALON PIO DATA (PIO 0 BASE,Ox1E);

39. }

40. if (slot value data > 1500) {

41. IOWR ALTERA AVALON PIO DATA (PIO 0 BASE, 0x1C);

42. }

43. if (slot value data > 2300) {

44. IOWR_ALTERA AVALON PIO DATA (PIO 0 BASE,0x18);

45. }

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

26

Annabsoks: revi e

46. if (slot value data > 3000) {

47. IOWR ALTERA AVALON PIO DATA (PIO 0 BASE,0x10);
48. }

49, if (slot value data > 3600) {

50. IOWR ALTERA AVALON PIO DATA (PIO 0 BASE,0x0);
51. }

52.

53. return 0;

54. }

The basic concept for programming on top of the provided HAL drivers is through the use of the
HAL APl Wrappers. The various driver header files contain the wrapper APIs that are used to
access the ADC and PIO.

Nios Il HAL APl Wrappers

Nios Il HAL Drivers

Lines 15-19 set up the slot buffer. There are 64 possible slots available, but only slot 1 is being
used for CH7. For completeness, the buffer has room for all 64.

Lines 23-25 configure the ADC for single-reading. The sequencer is stopped, the sequencer mode
is set to run once, and interrupts are disabled.

Once the ADC has been set up, Line 27 starts the sequencer to take one reading. The slot buffer
is filled with the results and the CH7/Slot1 result is then sent to the standard I/O. The value is never
converted to an actual voltage. The values can range from 0 to 4095 (0xfff). The data results are
then used to turn on the corresponding LEDs. The tolerance of the resistor pots can yield different
results so you can adjust the values and the LEDs that get turned on accordingly.

18. Save the file.
19. Right-click on adcLEDLevels project again, and select Build Project. The build should
complete successfully, and the adcLEDLevels.elf file should have been created.

B Console &2
CDT Build Console [adcLEDLevels]
Compiling altera modular adc.c...
nics2-slf-goc.exe -xc -MP -MMD —c -I./HAL/inc -I. -I./drivers/inc -pipe -D_ hal -DALT NC_INSTRUCTICN EMULATICN -DALT USE SMALL DRIVERS -DSMALL C LIS -DALT
Creating libhal DSp.a...
xm -f -f libhal bsp.a
nios2-elf-ar.exe -src libhal bsp.a obj/HAL/src/alt_alarm start.o obj/HAL/src/alt busy sleep.o obj/HAL/src/alt_close.o obj/HAL/src/alt_dcache flush.o obj/HAL/
[BSP build complete]
Info: Compiling main.c to obj/default/main.c
nics2-slf-goc.exe -xc -MP -MMD —c -Is:/FPGA/Intel Max 10_FPGA Evaluation Xit/NICS2_ADC/software/adcLEDLevels bsp//HAL/inc -Is:/FEGA/Inctel Max 10_FPGA Evaluat
Info: Linking adcLEDLevels.elf
niosz-slf-g++.exe -T'e:/FPGA/Intel Max_10_FPGA_Evaluation Kit/NIOSZ_ADC/software/adcLEDLevels_bsp//linker.x' -msys-crtO='e:/FPGA/Intel Max_10_FFGA Evaluatic
nios2-elf-insert.exe adcLEDLevels.elf --thread model hal --cpu_name nios2 --gsys true --simulation enabled false —-id 0 —-sidp Ox5248 --timestamp 1657560462
Info: (adcLEDLevels.elf) 11 KBytes program size (cede + initialized data).
Info: 3488 Bytes free for stack + heap.
Info: Creating adcLEDLevels.objdump
niosz-slf-objdump.exs --disassemble --syms --all-header --source adcLEDLevels.e=lf »adcLEDLevels.objdump
[adcLEDLevels build complete]

21:44:19 Build Finished (took 6€s.565m3)

20. Close Eclipse

Now, we are ready to program the board with the design and debug the application.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

27

Annabsoks: revi e

1.1.4 Program the Board
With the design compiled, application ready, and circuit connected, we can now test the design on
the board.

1. Connect the board and the programming cable per the cable instructions.

Note: The MAX 10 — 10M08 Evaluation Kit doesn’t come with a programming cable or built-in JTAG
USB Blaster II. You will have to use either the USB Blaster Il or EthernetBlaster Il external cables.
The EthernetBlaster Il was used for this example. DHCP setup was not working so a direct Ethernet
cable connection was made between a PC and the EthernetBlaster Il. Set the static IP for the PC
network card to 198.162.0.1. Access the EthernetBlaster Il via a browser and then change the IP
to a static IP that matches the network. The new IP address was used as the Server name. Your
experience might be different.

2. Power on the board and the programming cable box.
3. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the i icon on the toolbar.

4. The Programmer dialog appears. Click on the “Hardware Setup” button.

5. Click the Add hardware button. Select the Hardware type and fill in any remaining
information and click OK.

.

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

Currently selected hardware: | No Hardware =

W Add Hardware

Hardware type: EthernetBlaster =
Port:

Baud rate:

Server name: -
Server port: 1309

Server password:

Auto Detect OK Cancel

Close

6. The tool allows you to connect to a number of programming cables. We need to select the
one for our board. In the “Currently selected hardware”, click the drop-down and select the
hardware cable for the board, and click Close when finished

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

28

Rev 1.4

AAnnabooks-

% Hardware Setup

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming

hardware setup applies only to the current programmer window.

Currently selected hardware: | EthernetBlasteril on 192.168.1.198 [EthernetBlasteril] hd

Hardware frequency: Hz

Available hardware iterms

Hardware Server Part Add Hardware...

EthernetBlasterll 192.168.1.... EthernetBL..
Remove Hardware

Close

7. A NIOS2adc_time_limited.sof file gets created during the Compile Design flow. The file is
automatically filled in. There is only one FPGA on the board and in the JTAG chain, so the
file already has the Program/Configure checkbox checked. Click the Start button to
program the board. The process takes a few seconds and shows that the task completed
successfully.

Note: The reason for the “time_limited” in the name of the .sof file is that we chose an Nios II/f,
which requires a license. The design must be connected to the JTAG cable or the system will shut
off after an hour.

B programmer - E/FPGA/Intel Max_10_FPGA Evaluation_Kit/NIOS2_ADC/NIOS2ade - NIOS2adc - [NIOS2adc_time limited.cdf]

File Edit View Processing Tools Window Help bearch Intel Frea o

&\ Hardware Setup. | | on 192.168.1.198 [EthemetBlasterl] Mode: | JTAG h Progress: :}

Enable real-time ISP to allow background programming when available

e File Device Checksum Usercode | Program/ Verify Blank- Examine Security
stant Configure Check Bit
Wn:::‘: output_files/NIOS2adc... 10MOBSAE144 002F3207 002F3207 v

8 Auto Detect
Delete
" pdd File..
P Change File
A save File

Add Device

Wy

[P

A dialog will appear that states that the design is time-limited to one hour. The design can always
be reloaded when the timeout occurs.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

29

Annabsoks: revi e

S

OpenCore Plus Status

Design contains one or more time-limited OpenCore Plu

Time remaining: 00:59:56

Close

Important: This dialog acts as a tether to the time-limited IP. You must leave this dialog running
while you are running applications.

1.1.5 Deploy the Application in Eclipse
With the design loaded and the connection to JTAG up and running, we can test the application.

1. From the Quartus menu, select Tools-> Nios Il Software Build Tools for Eclipse.

2. Open the main.c application.

3. Toggle a breakpoint at line 25, when the ADC interrupt is disabled.

4. Right-click on adcLEDLevels and select Debug As->Nios |l Hardware.

5. The program will load and start running.

6. Click F8 or the resume button to jump to the breakpoint.

7. Step through the program to start the ADC sequencer and read the data into the slot
buffers. In the watch list, the slot buffer will only have one value in the first slot. Continue
to step through the program and LEDs are turned on based on the value.

[g) main.c 52

GiL_Uus GUL SiUL_UGLALUT), ffEIMTLT GLT UT SLULD GYGLLIGLLAT
alt_u32 slot_walue_ data;
int x = 0;
/3et all the slots to be zero
forix = 0; x < €4; x++){
adc_slot_data[x]=0;

adc_stop (ADC_0_SEQUENCER_CSR_BASE) ;
adc_set_mode run once (ADC_0_SEQUENCER CSR_BASE) ;
adec_interrupt disable (ADC 0 SAMPLE STORE CSR_BASE):

adc_start (ADC_0_SEQUENCER CSR_BASE) :
alt_adc word read(ADC_0_SAMPLE STORE_CSR_BASE, adc slot_data, ADC_O_SAMPLE STCRE CSR_CSD_LENGTH); //

slot_value_data = adc_slot_data[0]; //CHT is set for slot 1 (the values are off set by 1, thus 0
alt_printf ("ADC Value (HEX) from wrapper: Fxhn", slot_value_data);

IOWR_ALTERA_AVALON_PIO_DATA (PIO_O_BASE, 0x1F);

//LEDs

if(slot_wvalue_data > 700){
IOWR_ALTERAR AVALON PIC_DATA(PIC_O_BASE,OxlE):

if(slot_value_data > 1500){
ICWR_ALTERA AVALCN PIC_DATA (PIC_0_BASE, 0x1C);

P* Nios Il Conscle 52
add edLevels2 Nios IT Hardware configuration - cable: EthernetBlasterll on 192,168, 1,198 [EthernetBlasterll] device ID: 1instance ID: 0 name: jtag_uart_0.jtag
and LED test!
Value (HEX) from wrapper: 65b

8. When finished close Eclipse, the OpenCore Plus dialog, and the JTAG programming
application.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

30

Annabsoks: revi e

Warning: The tools make it easy to download and run applications, however, multiple application
download attempts can cause the tools to crash with a java runtime pop-up error.

1.1.6

Eclipse Application 2: adcLEDLevels_Interrupt Continuous Read

The ADC in this application will be set to run continuously. An interrupt will be set to signal when
data is in the buffer ready to be read. There will be a while-loop that waits for the interrupt, reads
the data, and turns on the LEDs like the first application.

1.

2.
3.

4.

We can take advantage of the already create adcLEDLevels bsp to create this new
application. From the menu in Eclipse, select File->New->Nios Il Application.

The dialog that appears asks for the name and the BSP project in the workspace.

Click on the 3 dots button, select the adcLEDLevels_bsp project, and click OK.

a
Nios Il Application
&3 Project name is empty

Project name: | |

BSP location: | |

= Project Selection

Uze defa
Select a B5P project

P Additional a - |
=% adcLEDLevels_bsp
a| Command:

1 g

Use relati

Locatior|

Enter the project name adcLEDLevels_Interrupt.

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

31

AL

nnabooks-

Rev 1.4

O ~J o Ul WDN

OF

10.
1
12.
13.
14.
15,
16.
17.
18.
19,
20.
21.
22.
23.
24.

®NOoO

= Nios Il Application

Nios Il Application
Create a new Mios |l Software Build Tools application project

Project name: | adcLEDLevels_Interrupt]

BSP location: | E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\NIOS2_ADC\software\adc|

Create...
[+] Use default location

Location: | EAFPGA\Intel Max_10_FPGA_Evaluation_Kit\NIOS2_ADC\software)a

Additional arguments:

Command:

| nios2-app-generate-makefile.exe --app-dir . --bsp-dir ../adcLEDLevels_bsp --elf-

Use relative path

Click Finish.

Right-click on adcLEDLevels_Interrupt and select New-> File from the context menu.

Enter the name main.c and click Finish.
In the main.c file, enter the following:

#include "sys/alt stdio.h"

#include "system.h"

#include "priv/alt busy sleep.h"

#include "sys/alt sys wrappers.h"

#include "altera modular adc.h"

#include "altera modular adc_ sequencer regs.h"
#include "altera modular adc_sample store regs.h"
#include "altera avalon pio regs.h"

void adcO_handler (void *context)

{
adc_interrupt disable (ADC 0 SAMPLE STORE CSR_ BASE) ;

int main()

{
alt putstr("ADC and LED test!\n");
IOWR_ALTERA AVALON PIO DATA (PIO_0 BASE, 0x1F);

alt u32 adc_slot datal[64]; //There are 64 slots available

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

32

Annabsoks: revi e

25 alt u32 slot value data;

26. int x = 0;

27. //Set all the slots to be zero

28. for(x = 0; x < 64; x++){

29 adc_slot data[x]=0;

30. }

31.

32. alt modular adc dev adcO0 dev, *p adcO;

33, p_adc0 = &adcO_dev;

34.

35. adc_stop (ADC_0 SEQUENCER CSR_BASE) ;

36. p adcO0 = altera modular adc open (ADC 0 SEQUENCER CSR NAME) ;

37 o alt adc register callback (p _adc0O, adcO handler, NULL,
ADC 0 SAMPLE STORE CSR BASE);

38. adc_set mode run continuously (ADC 0 SEQUENCER CSR BASE);

39. adc_clear interrupt status(ADC 0 SAMPLE STORE CSR BASE);

40. adc_interrupt enable(ADC 0 SAMPLE STORE CSR BASE) ;

41. adc_start (ADC_0_ SEQUENCER CSR BASE) ;

42.

43.

44 . while (1) {

45.

46. adc_wait for interrupt (ADC 0 SAMPLE STORE CSR BASE) ;

47 alt adc _word read(ADC 0 SAMPLE STORE CSR BASE, adc slot data,
ADC 0 SAMPLE STORE CSR CSD LENGTH); //fill in all the slots

48. slot value data = adc_slot data[0]; //CH7 is set for slot 1
(the values are off set by 1, thus 0 for the array).

49. alt printf ("ADC Value (HEX) from wrapper: $x\n",
slot value data);

50.

51. IOWR ALTERA AVALON PIO DATA (PIO 0 BASE, Ox1F);

52.

53. //LEDs act like a level each one turns on the higher the
voltage.

54, //Since the LEDs are active low, the 0s turn them on. Saves on
having to add NOT gates for each line in the design.

55, if (slot value data > 700) {

56. IOWR_ALTERA AVALON PIO DATA (PIO 0O BASE, 0x1E);

57. }

58. if (slot value data > 1500) {

59. IOWR ALTERA AVALON PIO DATA (PIO 0 BASE, 0x1C);

60. }

61. if (slot value data > 2300) {

62. IOWR ALTERA AVALON PIO DATA(PIO O BASE,0x18);

63. }

o4. if (slot value data > 3000) {

65. IOWR ALTERA AVALON PIO_DATA (PIO 0 BASE, 0x10) ;

66. }

67. if (slot value data > 3600) {

68. IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, 0x0);

69. }

70.

71. alt busy sleep(10000);

2. }

73.

74. return 0;

75. }

For a continuously running ADC sequencer, an interrupt handler is needed to stop interrupts so the
slot buffers can be read. Lines 11-15 define the handler. The handler simply disables the interrupts.
Lines 24-30 set up the slot buffer as the first application. Lines 32-41 set up an instance of the

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

33

Rev 1.4

Annabgoks-

alt_modular_adc_dev structure and a pointer based on the structure. The pointer is set to point to
the address of the instance. The pointer is then used to open the adcO based on the sequencer
name. The handler is then registered as the callback of the adc0 instance. The sequencer is then
set to run continuously, the interrupt status is cleared and the interrupt is then enabled. The
sequencer is then started.

The while-loop contains the main running application. The program will wait for the adcO interrupt
status register (ISR) to be set to 1. With the handler stopping the interrupts, the ISR can be set and
the read of the buffer can take place. If the interrupt is not stopped, the wait will go on forever. Once
the buffer has been read, the interrupt is then turned back on by the driver. The program then writes
out the value to the standard output and turns on the LEDs accordingly. The program will continue
to loop.

9. Save the file.

10. Build the application.

11. Set a breakpoint at line 41, starting the sequencer.

12. Make sure that you have deployed the design to the FPGA and the OpenCore Status dialog
is running.

13. Right-click on adcLEDLevels_Interrupt and select Debug As->Nios || Hardware.

14. The program will load and start running.

15. Click F8 or the resume button to jump to the breakpoint.

16. Step through the program to start the ADC sequencer. As you step through the while-loop
and get to the wait-on-interrupt, you will notice a slight pause in the processing before you
can continue stepping through the code. If you want to set a breakpoint in the
adc0_handler, you can see when the handler has been triggered. The program runs like
the first program but in a continuous loop to repeatedly read the data from the ADC,
stopping the interrupt each time to get and display the data.

17. Hit F8 and the application will continue to run at full speed and you can adjust the trimmer
pot and watch the LEDs turn on and off like a bar graph as the voltage level changes.

18. When finished, close Eclipse, the OpenCore Plus dialog, and JTAG programming
application.

1.2 Summary: Limited Documentation and Examples

The documentation on the API wrappers for the ADC is limited to the source code. Any clue on
how to use the API in an application is left up to guesswork, experience, and searching the Intel
community platforms for answers. Internet searches resulted in several half-baked examples based
on older versions of Nios || HAL code. For someone new to this development, these examples can
be confusing and misleading. Some examples confused the sequencer and sample store defines
when calling the APIs, which is a mistake that can crash the application. Hopefully, the walk-through
of this design and the two types of ADC applications will help you with your project.

1.3 References
The following reference were used for this article:

¢ Intel® MAX® 10 Analog to Digital Converter User Guide -
https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-
digital-converter-overview.html

¢ Introduction to Analog to Digital Conversion in Intel® MAX® 10 Devices Parts 1 and 2 -
Intel FPGA training site Intel® FPGA Technical Training

e Using the ADC Toolkit in Intel® MAX® 10 Devices - Intel FPGA training site Intel® FPGA
Technical Training

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

34

https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-digital-converter-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-digital-converter-overview.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html

Rev 1.4

AAnnabooks-

e How to Create ADC Design in MAX 10 Device Using Qsys Tool -
https://cdrdv2.intel.com/v1/dl/getContent/649255?explicitVersion=true /
https://www.youtube.com/watch?v=0001RFa-4Xk

¢ Intel® MAX® 10-10M08 Evaluation Kit schematic file.
Altera_10M08S_E144_eval_schematic REV_1_0.pdf.

The following are a few Nios Il ADC applications reference found with an Internet search:

e http://leliuria.blog.jp/archives/49026265.html

e https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-
p/182084

e https://faculty-
web.msoe.edu/johnsontimoj/EE3921/files3921/max10 _adc nios example.pdf

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios I, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

35

https://cdrdv2.intel.com/v1/dl/getContent/649255?explicitVersion=true
https://www.youtube.com/watch?v=0oO1RFa-4Xk
http://leliuria.blog.jp/archives/49026265.html
https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-p/182084
https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-p/182084
https://faculty-web.msoe.edu/johnsontimoj/EE3921/files3921/max10_adc_nios_example.pdf
https://faculty-web.msoe.edu/johnsontimoj/EE3921/files3921/max10_adc_nios_example.pdf

