

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

1

Nios® II ADC Implementation on Intel® MAX® 10-10M08
Evaluation Kit
By Sean D. Liming and John R. Malin
Annabooks, LLC. – www.annabooks.com

November 2022

As one digs into all the features of the Intel MAX 10, the Analog to Digital Converter, ADC, provides
a nice multi-channel solution for audio applications. Add the ADC to a Nios II processor design and
you can write applications that can process analog data to perform other functions. The only catch
is the lack of examples on how to use the Nios II HAL API to access the ADC. Internet search
results provide limited examples and those examples shared are based on older versions of the
development tools and software implementations. This paper’s hands-on exercises look to provide
solutions based on the latest Quartus release.

The Intel Max 10 10M08 Evaluation Kit will be used as the target for this project. The evaluation kit
is a bare-bones platform that provides the basics for learning FPGA development. The smaller
number of logic elements and RAM blocks in the Intel Max 10 means that a design is going to be
tight and the small C library has to be used for application development. The platform makes it ideal
for learning how to design and program with limited resources.

The design will take advantage of what the board provides. The system will read the voltage from
the 10Kꭥ trimmer pot and turn on red LEDs based on the voltage level. As the trimmer pot is
adjusted from 0v to 3.3V the LEDs will be turned on or off based on the voltage level. A signal
generator can be used if the 10Kꭥ trimmer pot is not populated on the board. The JTAG will act as
a UART for standard output so you can see the ADC values. Two different applications will be
developed. One will be a single shot reading of the ADC, and the other will be a continuous-reading,
interrupt-driven application.

Please see the article Intel® Quartus® Prime Lite and Nios® II SBT for Eclipse Installation
Instructions on Annabooks.com to install the software needed for this hands-on exercise.

The Project Requirements:

• Intel Quartus Prime Lite Edition V21.0 and Nios® II SBT for Eclipse already installed.

• Intel® MAX® 10 - 10M08 Evaluation Kit and the schematic for the evaluation board is
required. The schematic PDF file can be downloaded from the Intel FPGA website.

o A populated 10KꭥTrimmer pot for R94 on the schematic, part number 3362P-1-
103TLF.

o Alternative: Signal generator or other small analog signal source.

• Intel FPGA Programming cable – USB Blaster II or EthernetBlaster II. The Intel® MAX®
10 - 10M08 Evaluation Kit doesn’t have a built-in USB Blaster II onboard.

• Intel® Quartus® Prime Lite and Nios® II SBT for Eclipse Installation Instructions on
Annabooks.com

Note: There are equivalent MAX 10 development and evaluation boards available. These boards
can also be used as the target, but you will have to adjust to the available features on the board.
Please make sure that you have the board’s schematic files as these will be needed to identify pins.

1.1 Nios II ADC Project

The custom MCU will comprise the following IP blocks:

• Nios II processor

http://www.annabooks.com/
https://www.annabooks.com/Articles/Articles_FPGA/Intel-FPGA-Tools-Setup-Rev1.1.pdf

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

2

• Onchip RAM

• ADC

• Phase Lock Loop (PLL)

• Timer

• Sys ID

• JTAG UART

1.1.1 Create the Project
The first step is to create the design project.

1. Open Quartus.
2. Click on the New Project Wizard.

3. Click Next to the Introduction dialog.
4. Select or create a project directory \NIOS2_ADC (Do not use the Quartus installation

directory) and name the project: “NIOS2adc”. Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project
directory is a separate path from the Quartus installation files. Also, there can be no spaces in the
name of the folders or projects.

5. Project Type: Empty project, click Next.
6. Add File: no files to add, click Next.
7. Family, Device & Board Settings: click the Board tab and select: MAX 10 FPGA 10M08

Evaluation Kit and click Next.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

3

8. EDA Tools: click Next.
9. Summary: click Finish

Note: The actual MAX 10 on our board is the 10M08SAE144C8G, thus it is not an Engineering
Sample (ES). The next two steps change the device to the production device. Depending on the
hardware that you use, your experience might be different. These next two optional steps change
the device.

10. In the project navigation pane on the left, right-click on 10: 10M08SAE144C8GE, and select
Device from the context menu.

11. In the Available devices, scroll down and select the 10M08SAE144C8G, click OK.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

4

1.1.2 Create the Design in Platform Designer
Quartus supports many design types to create an FPGA design. The Platform Designer tool will be
used for this hands-on exercise. Platform Designer makes it easy to add already-built IP blocks
and interconnect them.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon
from the toolbar.

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform
Designer makes it easy to add IP blocks and make interconnections between the blocks.

2. The top left pane contains the IP Catalog with all the available IP blocks that come with
Quartus Prime. In the search box, type Nios.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

5

3. Expand the Processors and Peripherals and Embedded Processors branches and double-
click on the Nios II Processor.

4. This will open the Nios II Configuration page. The first tab is to select the type of core Nios
II/e or Nios II/f. We will keep the defaults for now. Click Finish.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

6

1. The processor will be added to the design. Right-click on the name nios2_gen2_cpu, and
rename it to nios2.

2. Now let’s add the RAM IP block. In the IP Catalog enter RAM in the search box.
3. Double-click on On-chip Memory (RAM or ROM) in the Intel FPGA IP.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

7

4. The configuration page will appear. Change the Total memory size to 16384. We need
more memory to run this application.

5. Uncheck the box for “Initialize memory content” and click Finish.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

8

6. The On-chip Memory (RAM or ROM) in the Intel FPGA IP will be added to the design.
Right-click on the name, and rename it to onchip_RAM

7. In the IP Catalog search box, type adc.

8. Expanding the branches reveals the available IP. Double-click on Modular ADC core Intel
FPGA IP. This will add the ADC IP to the design and open the Modular ADC core Intel
FPGA IP configuration page.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

9

9. In the General tab, set the following:
a. Core Variant: Standard sequencer with Avalon-MM sample storage.
b. Debug Path: Disabled.
c. ADC Sample Rate: 1 MHz.
d. ASC Input Clock: 10 MHz.
e. Reference Voltage Source: External.
f. Internal reference Voltage: 3.3V.
g. Enable user-created expect output file: Disabled.

The ADC IP block supports several implementation variants. The one chosen will use the MAX 10’s
internal RAM to save the data. The evaluation kit has a 2.5 V reference voltage for the ADC, but
the 10K trimmer pot can supply 3.3 to the channel so we will use the internal 3.3V.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

10

10. In the Channels tab, click on CH7, and check the “Use Channel 7” box

11. Click on the Sequencer tab.
12. Set the number of slots used to 1.
13. Set Slot 1: to CH7

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

11

14. Click Finish.
15. The ADC will be added to the design. In the System Contents, you will see the ADC has

been added to the list of devices to be interconnected. Right-click on the name and rename
the device to ADC0.

16. Now we need to add the PPL. In the IP Catalog, type pll in the search.
17. A number of different PLLs appear in the branches, but only a few are available. Double-

click on the ALTPLL Intel FPGA IP to add it to the design.

18. The PLL is added, and the ALTPLL Intel FPGA IP configuration page appears. The
configuration page has a workflow-like presentation, 1 Parameter Setting contains the
general settings for the PLL. For the “What is the frequency of the inclk0 input?” set the
value to 50.000 MHz. The evaluation kit has a 50 MHz oscillator.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

12

19. Click Next.
20. Uncheck the box next to “Create an ‘areset’ input to asynchronously reset the PLL”. This

signal is not needed for this design, and this will remove one warning from the list. Leave
Create ‘locked’ output checked.

21. Click on 3, Output Clocks tab.
22. There are 5 output clock settings. All we need is clk c0. Under clk c0, click the radio button

next to Enter output clock frequency.
23. Set the Requested Settings to 10.00 MHz. This is to match the input clock frequency of the

ADC.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

13

24. Click Finish.
25. The PLL is added to the design. Rename the PLL as pll_0.
26. In the IP Catalog search, enter timer.
27. Double-click on the Interval Timer Intel FPGA IP.

28. Keep the settings as they are and click Finish.
29. In the IP Catalog search, enter system ID.
30. Double-click on the System ID Peripheral Intel FPGA IP.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

14

31. A configuration page will appear. There are no changes to be made. Click Finish.
32. In the IP Catalog search, enter uart.
33. Double-click on the JTAG UART Intel FPGA IP.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

15

34. A configuration page will appear. There are no changes to be made. Click Finish.
35. In the IP Catalog, enter pio in the search box.
36. Add the PIO (Parallel I/O) Intel FPGA IP to the design.

37. In the configuration page, set Width to 5, leave the Direction as Output, and set the Output
Port Reset Value to 0x1f. Since the LEDs are active low, the value turns all 5 LEDs off on
startup.

38. Click Finish.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

16

39. The PIO will be added to the design. Rename the PIO to pio_0.
40. For the PIO exernal_connection, under pio_0, double-click on the "Double-click to export”

in the exernal_connection row and Export column and set the value to led5. This will
provide a base name for connecting the signals to the PINs on the chip. The connection
will be made in PIN Planner.

41. Now we need to wire the IP blocks together. The picture below shows all the wiring
connections for the design.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

17

42. Let’s assign a base address. From the menu, select System->Assign Base Address. This
will remove a number of errors from the message box. You will see the base address values
for each IP change in the System Contents tab.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

18

43. Finally, let’s set the reset and exception vector addresses. Double-click on the nios2 to
open the configuration page.

44. Click on the Vectors tab.
45. Change the Reset vector memory drop-down to onchip_RAM.s1.
46. Change the Exception vector memory drop-down to onchip_RAM.s1.

47. Click on Generate HDL…
48. Keep the defaults and click the Generate button.
49. A dialog will appear asking you to save the design, click Save.
50. Give the name as NIOS2adcMCU.qsys, and click Save.
51. Once the save has completed, click Close.
52. The generate process kicks off. The processes should succeed, click Close.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

19

53. Click Finish to close the design.
54. Quartus then reminds you to add the new design to the project. Click Ok.
55. In the Project Navigator, click on the drop-down and select Files.
56. Right-click on Files and select Add/Remote Files in Project.

57. A Settings – NIOS2adc page appears with Files on the left highlighted. Click the three dots

browse button for File name, and navigate to the \NIOS2_ADC\NIOS2adcMCU\synthesis
folder.

58. Click on the NIOS2adcMCU.qip file and click open.
59. Click OK to close the Settings- NIOS2adc page. The qip file is added to the Project

navigator list. Underneath are all the Verilog files that were generated by Platform
Designer.

60. In the Project Navigator, Right-click on the NIOS2adcMCU/synthesis/NIOS2adcMCU.v file
and select Set as Top-Level Entity from the context menu.

61. Save the project.
62. In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The

analysis will take some time, and it should succeed in the end. This step helps to diagnose
any errors and finds the Node Names for the pin assignments in the next step.

63. Once the process completes, the pin assignments need to be set. From the menu, select

Assignments->Pin Planner or click on the icon from the toolbar. The analysis just
run populated the Node Name list at the bottom of the Pin Planner dialog.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

20

64. Using the board schematic, locate the pins for the SW1 and the 50MHz clock. Set the
Location values for both node names. For the MAX 10 – 10M08 Evaluation Board, these
values are as follows:

Node Name Location

SW1 PIN_121

Clk_50MHz: PIN_27

altera_reserved_tck PIN_18

altera_reserved_tdi PIN_19

altera_reserved_tdo PIN_20

altera_reserved_tms PIN_16

Led5_export[4] PIN_141

Led5_export[3] PIN_140

Led5_export[2] PIN_135

Led5_export[1] PIN_134

Led5_export[0] PIN_132

65. Set the I/O Standard to 3.3V-LVTTL for all pins except JTAG. You can see from the

schematic that the I/O are all tied to 3.3V.

66. Close the Pin Planner when finished. The diagram gets updated with the pin numbers.
67. Save the project.

Note: A best practice at this point would be to make a backup of the project folder. Quartus can
crash unexpectedly, since it appears to be written in Java. Archiving is simple. From the menu,
Project->Archive Project.

68. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

Start from the context menu, or you can click on the symbol in the toolbar. The design
should compile successfully.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

21

1.1.3 Eclipse Application 1: adcLEDLevels One Shot Read
Now, we are ready to create an application to run on the Nios II processor. The application will
configure the ADC for a single read of the input analog signal and then light the LEDs based on the
resulting voltage value. The one-shot solution is good when you only need to take a reading once
in a while. For example, reading the TSD to get the FPGA temperature.

1. In Quartus Prime, from the menu, select Tools->Nios II Software Build Tools for Eclipse.
2. Eclipse will open and ask for the root workspace directory. Set the workspace folder to

something like \Documents\FPGA\Apps, and hit ok. It doesn’t matter the location of the
workspace, since the actual applications for the project will exist within the
\NIOS2_UART\software folder.

3. In Eclipse, from the menu, select File->New-> Nios II Application and BSP from Template.

4. The first step is to open the SOPC file that was generated for the hardware design. Click
on the three dots button.

5. Navigate to the \NIOS2_ADC folder and open the NIOS2adcMCU.sopcinfo file. The CPU
name will reflect the name we gave the CPU in Platform Builder.

6. Enter the project name: adcLEDLevels.
7. In the Project Template, select Blank Project.
8. Click Finish.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

22

Two projects will be generated. The adcLEDLevels _bsp is generated to give you the HAL drivers
and API based on the hardware design. The adcLEDLevels is the application that will run on the
hardware.

9. We need to edit the BSP to use the small C library. The BSP Editor tool allows you to edit
the settings.bsp file to make specific changes for the target. Right-click on
adcLEDLevels_bsp and select Nios II->BSP Editor from the context menu.

The BSP Editor opens and opens the settings.bsp file automatically. If you started the BSP Editor
from the main menu, you would have to manually navigate to open the file. In the BSP Editor, you
can see this is where the selection of the small_c library and reduced drivers are set. The standard
input, output, and error ports to handle messages are already set to jtag_uart_0.

10. Tick the box for enable_small_c_library and enable_reduced_device_drivers, and click
Generate to make the changes.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

23

11. Click Exit when finished.

The adcLEDLevels_bsp contains the key files that will help with filling in the code to access the
ADC and PIO ports. System.h contains the definitions that can be used in Platform Designer to set
up the ADC and PIO. The ADC list is very long as the SampleStore and Sequencer define multiple
values.

Since we are using the small_C_library for space reasons, the standard C io calls cannot be used.
Instead, we will be using the Nios II HAL API to access the ADC, PIO, and standard output via the

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

24

JTAG UART. The other header files are under the drivers\inc folder altera_avalon_adc_*.h. Each
file contains the function prototypes of the commands that will be used in the application.

Before we move on to writing the application, we need to fix bugs that are in the generation of the
BSP. Intel has done a great job of taking the heavy HDL coding out of the design, but they forgot a
few things.

12. In the adcLEDLevels _bsp project, expand Drivers\inc, and open the altera_modular_adc.h
file. At about line 92 you will see the following:

#define ALTERA_MODULAR_ADC_INSTANCE(name, dev) \

static alt_modular_adc_dev dev = \

{ \

 { \

 ALT_LLIST_ENTRY, \

 name##_NAME, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 }, \

 NULL, \

 NULL, \

 0, \

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

25

 0, \

 name##_DUAL_ADC_MODE \

}

/*

 * The macro ALTERA_MODULAR_ADC_INIT is called by the auto-generated

function

 * alt_sys_init() to initialize a given device instance.

 */

#define ALTERA_MODULAR_ADC_INIT(name, dev) \

 altera_modular_adc_init(&dev, name##_IRQ_INTERRUPT_CONTROLLER_ID,

name##_IRQ);

This autogenerated file is not correct. The variable names are not set up correctly. For example,
name##_NAME should actually be name##_SEQUENCER_CSR_NAME. This matches the
system.h defines. Name## resolves to adc_0; the name we gave the ADC in Platform Designer.

13. Change the code to the following:

#define ALTERA_MODULAR_ADC_INSTANCE(name, dev) \

static alt_modular_adc_dev dev = \

{ \

 { \

 ALT_LLIST_ENTRY, \

 name##_SEQUENCER_CSR_NAME, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 NULL, \

 }, \

 NULL, \

 NULL, \

 0, \

 0, \

 name##_SEQUENCER_CSR_DUAL_ADC_MODE \

}

/*

 * The macro ALTERA_MODULAR_ADC_INIT is called by the auto-generated

function

 * alt_sys_init() to initialize a given device instance.

 */

#define ALTERA_MODULAR_ADC_INIT(name, dev) \

 altera_modular_adc_init(&dev,

name##_SAMPLE_STORE_CSR_IRQ_INTERRUPT_CONTROLLER_ID,

name##_SAMPLE_STORE_CSR_IRQ);

14. Save and close the file.

Note: Any time you have to update the adcLEDLevels_bsp project by generating a new BSP
because of a hardware design change, you also have to fix this file again.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

26

15. We need to add a main.c file to the project. Right-click on the adcLEDLevels project, and

select New->File from the context menu.
16. Enter the file name main.c and click Finish.
17. Add the following code to the main.c file.

1. #include "sys/alt_stdio.h"

2. #include "system.h"

3. #include "priv/alt_busy_sleep.h"

4. #include "sys/alt_sys_wrappers.h"

5. #include "altera_modular_adc.h"

6. #include "altera_modular_adc_sequencer_regs.h"

7. #include "altera_modular_adc_sample_store_regs.h"

8. #include "altera_avalon_pio_regs.h"

9.

10.

11. int main()

12. {

13. alt_putstr("ADC and LED test!\n");

14.

15. alt_u32 adc_slot_data[64]; //There are 64 slots available

16. alt_u32 slot_value_data;

17. int x = 0;

18. //Set all the slots to be zero

19. for(x = 0; x < 64; x++){

20. adc_slot_data[x]=0;

21. }

22.

23. adc_stop(ADC_0_SEQUENCER_CSR_BASE);

24. adc_set_mode_run_once(ADC_0_SEQUENCER_CSR_BASE);

25. adc_interrupt_disable(ADC_0_SAMPLE_STORE_CSR_BASE);

26.

27. adc_start(ADC_0_SEQUENCER_CSR_BASE);

28.

29. alt_adc_word_read(ADC_0_SAMPLE_STORE_CSR_BASE, adc_slot_data,

ADC_0_SAMPLE_STORE_CSR_CSD_LENGTH); //fill in all the slots

30. slot_value_data = adc_slot_data[0]; //CH7 is set for slot 1

(the values are off set by 1, thus 0 for the array).

31. alt_printf("ADC Value (HEX) from wrapper: %x\n",

slot_value_data);

32.

33. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1F);

34.

35. //LEDs act like a level each one turns on the higher the

voltage.

36. //Since the LEDs are active low, the 0s turn them on. Saves on

having to add NOT gates for each line in the design.

37. if(slot_value_data > 700){

38. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1E);

39. }

40. if(slot_value_data > 1500){

41. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1C);

42. }

43. if(slot_value_data > 2300){

44. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x18);

45. }

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

27

46. if(slot_value_data > 3000){

47. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x10);

48. }

49. if(slot_value_data > 3600){

50. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x0);

51. }

52.

53. return 0;

54. }

The basic concept for programming on top of the provided HAL drivers is through the use of the
HAL API Wrappers. The various driver header files contain the wrapper APIs that are used to
access the ADC and PIO.

Nios II HAL Drivers

Nios II HAL API Wrappers

Application

Lines 15-19 set up the slot buffer. There are 64 possible slots available, but only slot 1 is being
used for CH7. For completeness, the buffer has room for all 64.

Lines 23-25 configure the ADC for single-reading. The sequencer is stopped, the sequencer mode
is set to run once, and interrupts are disabled.

Once the ADC has been set up, Line 27 starts the sequencer to take one reading. The slot buffer
is filled with the results and the CH7/Slot1 result is then sent to the standard I/O. The value is never
converted to an actual voltage. The values can range from 0 to 4095 (0xfff). The data results are
then used to turn on the corresponding LEDs. The tolerance of the resistor pots can yield different
results so you can adjust the values and the LEDs that get turned on accordingly.

18. Save the file.
19. Right-click on adcLEDLevels project again, and select Build Project. The build should

complete successfully, and the adcLEDLevels.elf file should have been created.

20. Close Eclipse

Now, we are ready to program the board with the design and debug the application.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

28

1.1.4 Program the Board
With the design compiled, application ready, and circuit connected, we can now test the design on
the board.

1. Connect the board and the programming cable per the cable instructions.

Note: The MAX 10 – 10M08 Evaluation Kit doesn’t come with a programming cable or built-in JTAG
USB Blaster II. You will have to use either the USB Blaster II or EthernetBlaster II external cables.
The EthernetBlaster II was used for this example. DHCP setup was not working so a direct Ethernet
cable connection was made between a PC and the EthernetBlaster II. Set the static IP for the PC
network card to 198.162.0.1. Access the EthernetBlaster II via a browser and then change the IP
to a static IP that matches the network. The new IP address was used as the Server name. Your
experience might be different.

2. Power on the board and the programming cable box.
3. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the icon on the toolbar.
4. The Programmer dialog appears. Click on the “Hardware Setup” button.
5. Click the Add hardware button. Select the Hardware type and fill in any remaining

information and click OK.

6. The tool allows you to connect to a number of programming cables. We need to select the
one for our board. In the “Currently selected hardware”, click the drop-down and select the
hardware cable for the board, and click Close when finished

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

29

7. A NIOS2adc_time_limited.sof file gets created during the Compile Design flow. The file is
automatically filled in. There is only one FPGA on the board and in the JTAG chain, so the
file already has the Program/Configure checkbox checked. Click the Start button to
program the board. The process takes a few seconds and shows that the task completed
successfully.

Note: The reason for the “time_limited” in the name of the .sof file is that we chose an Nios II/f,
which requires a license. The design must be connected to the JTAG cable or the system will shut
off after an hour.

A dialog will appear that states that the design is time-limited to one hour. The design can always
be reloaded when the timeout occurs.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

30

Important: This dialog acts as a tether to the time-limited IP. You must leave this dialog running
while you are running applications.

1.1.5 Deploy the Application in Eclipse
With the design loaded and the connection to JTAG up and running, we can test the application.

1. From the Quartus menu, select Tools-> Nios II Software Build Tools for Eclipse.
2. Open the main.c application.
3. Toggle a breakpoint at line 25, when the ADC interrupt is disabled.
4. Right-click on adcLEDLevels and select Debug As->Nios II Hardware.
5. The program will load and start running.
6. Click F8 or the resume button to jump to the breakpoint.
7. Step through the program to start the ADC sequencer and read the data into the slot

buffers. In the watch list, the slot buffer will only have one value in the first slot. Continue
to step through the program and LEDs are turned on based on the value.

8. When finished close Eclipse, the OpenCore Plus dialog, and the JTAG programming
application.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

31

Warning: The tools make it easy to download and run applications, however, multiple application
download attempts can cause the tools to crash with a java runtime pop-up error.

1.1.6 Eclipse Application 2: adcLEDLevels_Interrupt Continuous Read
The ADC in this application will be set to run continuously. An interrupt will be set to signal when
data is in the buffer ready to be read. There will be a while-loop that waits for the interrupt, reads
the data, and turns on the LEDs like the first application.

1. We can take advantage of the already create adcLEDLevels_bsp to create this new
application. From the menu in Eclipse, select File->New->Nios II Application.

2. The dialog that appears asks for the name and the BSP project in the workspace.
3. Click on the 3 dots button, select the adcLEDLevels_bsp project, and click OK.

4. Enter the project name adcLEDLevels_Interrupt.

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

32

5. Click Finish.
6. Right-click on adcLEDLevels_Interrupt and select New-> File from the context menu.
7. Enter the name main.c and click Finish.
8. In the main.c file, enter the following:

1. #include "sys/alt_stdio.h"

2. #include "system.h"

3. #include "priv/alt_busy_sleep.h"

4. #include "sys/alt_sys_wrappers.h"

5. #include "altera_modular_adc.h"

6. #include "altera_modular_adc_sequencer_regs.h"

7. #include "altera_modular_adc_sample_store_regs.h"

8. #include "altera_avalon_pio_regs.h"

9.

10.

11. void adc0_handler (void *context)

12. {

13. adc_interrupt_disable(ADC_0_SAMPLE_STORE_CSR_BASE);

14.

15. }

16.

17.

18. int main()

19. {

20. alt_putstr("ADC and LED test!\n");

21. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1F);

22.

23.

24. alt_u32 adc_slot_data[64]; //There are 64 slots available

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

33

25. alt_u32 slot_value_data;

26. int x = 0;

27. //Set all the slots to be zero

28. for(x = 0; x < 64; x++){

29. adc_slot_data[x]=0;

30. }

31.

32. alt_modular_adc_dev adc0_dev, *p_adc0;

33. p_adc0 = &adc0_dev;

34.

35. adc_stop(ADC_0_SEQUENCER_CSR_BASE);

36. p_adc0 = altera_modular_adc_open(ADC_0_SEQUENCER_CSR_NAME);

37. alt_adc_register_callback (p_adc0, adc0_handler, NULL,

ADC_0_SAMPLE_STORE_CSR_BASE);

38. adc_set_mode_run_continuously(ADC_0_SEQUENCER_CSR_BASE);

39. adc_clear_interrupt_status(ADC_0_SAMPLE_STORE_CSR_BASE);

40. adc_interrupt_enable(ADC_0_SAMPLE_STORE_CSR_BASE);

41. adc_start(ADC_0_SEQUENCER_CSR_BASE);

42.

43.

44. while(1){

45.

46. adc_wait_for_interrupt(ADC_0_SAMPLE_STORE_CSR_BASE);

47. alt_adc_word_read(ADC_0_SAMPLE_STORE_CSR_BASE, adc_slot_data,

ADC_0_SAMPLE_STORE_CSR_CSD_LENGTH); //fill in all the slots

48. slot_value_data = adc_slot_data[0]; //CH7 is set for slot 1

(the values are off set by 1, thus 0 for the array).

49. alt_printf("ADC Value (HEX) from wrapper: %x\n",

slot_value_data);

50.

51. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1F);

52.

53. //LEDs act like a level each one turns on the higher the

voltage.

54. //Since the LEDs are active low, the 0s turn them on. Saves on

having to add NOT gates for each line in the design.

55. if(slot_value_data > 700){

56. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1E);

57. }

58. if(slot_value_data > 1500){

59. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1C);

60. }

61. if(slot_value_data > 2300){

62. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x18);

63. }

64. if(slot_value_data > 3000){

65. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x10);

66. }

67. if(slot_value_data > 3600){

68. IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x0);

69. }

70.

71. alt_busy_sleep(10000);

72. }

73.

74. return 0;

75. }

For a continuously running ADC sequencer, an interrupt handler is needed to stop interrupts so the
slot buffers can be read. Lines 11-15 define the handler. The handler simply disables the interrupts.
Lines 24-30 set up the slot buffer as the first application. Lines 32-41 set up an instance of the

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

34

alt_modular_adc_dev structure and a pointer based on the structure. The pointer is set to point to
the address of the instance. The pointer is then used to open the adc0 based on the sequencer
name. The handler is then registered as the callback of the adc0 instance. The sequencer is then
set to run continuously, the interrupt status is cleared and the interrupt is then enabled. The
sequencer is then started.

The while-loop contains the main running application. The program will wait for the adc0 interrupt
status register (ISR) to be set to 1. With the handler stopping the interrupts, the ISR can be set and
the read of the buffer can take place. If the interrupt is not stopped, the wait will go on forever. Once
the buffer has been read, the interrupt is then turned back on by the driver. The program then writes
out the value to the standard output and turns on the LEDs accordingly. The program will continue
to loop.

9. Save the file.
10. Build the application.
11. Set a breakpoint at line 41, starting the sequencer.
12. Make sure that you have deployed the design to the FPGA and the OpenCore Status dialog

is running.
13. Right-click on adcLEDLevels_Interrupt and select Debug As->Nios II Hardware.
14. The program will load and start running.
15. Click F8 or the resume button to jump to the breakpoint.
16. Step through the program to start the ADC sequencer. As you step through the while-loop

and get to the wait-on-interrupt, you will notice a slight pause in the processing before you
can continue stepping through the code. If you want to set a breakpoint in the
adc0_handler, you can see when the handler has been triggered. The program runs like
the first program but in a continuous loop to repeatedly read the data from the ADC,
stopping the interrupt each time to get and display the data.

17. Hit F8 and the application will continue to run at full speed and you can adjust the trimmer
pot and watch the LEDs turn on and off like a bar graph as the voltage level changes.

18. When finished, close Eclipse, the OpenCore Plus dialog, and JTAG programming
application.

1.2 Summary: Limited Documentation and Examples

The documentation on the API wrappers for the ADC is limited to the source code. Any clue on
how to use the API in an application is left up to guesswork, experience, and searching the Intel
community platforms for answers. Internet searches resulted in several half-baked examples based
on older versions of Nios II HAL code. For someone new to this development, these examples can
be confusing and misleading. Some examples confused the sequencer and sample store defines
when calling the APIs, which is a mistake that can crash the application. Hopefully, the walk-through
of this design and the two types of ADC applications will help you with your project.

1.3 References

The following reference were used for this article:

• Intel® MAX® 10 Analog to Digital Converter User Guide -
https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-
digital-converter-overview.html

• Introduction to Analog to Digital Conversion in Intel® MAX® 10 Devices Parts 1 and 2 -
Intel FPGA training site Intel® FPGA Technical Training

• Using the ADC Toolkit in Intel® MAX® 10 Devices - Intel FPGA training site Intel® FPGA
Technical Training

https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-digital-converter-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-digital-converter-overview.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html

Rev 1.4

Copyright © 2022 Annabooks, LLC. All rights reserved
Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

35

• How to Create ADC Design in MAX 10 Device Using Qsys Tool -
https://cdrdv2.intel.com/v1/dl/getContent/649255?explicitVersion=true /
https://www.youtube.com/watch?v=0oO1RFa-4Xk

• Intel® MAX® 10-10M08 Evaluation Kit schematic file.
Altera_10M08S_E144_eval_schematic_REV_1_0.pdf.

The following are a few Nios II ADC applications reference found with an Internet search:

• http://leliuria.blog.jp/archives/49026265.html

• https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-
p/182084

• https://faculty-
web.msoe.edu/johnsontimoj/EE3921/files3921/max10_adc_nios_example.pdf

https://cdrdv2.intel.com/v1/dl/getContent/649255?explicitVersion=true
https://www.youtube.com/watch?v=0oO1RFa-4Xk
http://leliuria.blog.jp/archives/49026265.html
https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-p/182084
https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-p/182084
https://faculty-web.msoe.edu/johnsontimoj/EE3921/files3921/max10_adc_nios_example.pdf
https://faculty-web.msoe.edu/johnsontimoj/EE3921/files3921/max10_adc_nios_example.pdf

