

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
1

Azure Sphere SDK: First Look
By Sean D. Liming and John R. Malin
Annabooks – www.annabooks.com

January 2019

Reports of 100+ billion devices connected to the Internet by 2030 have helped spawn renewed
interest in Embedded Systems, specifically those devices which have Internet connection capability
that can connect to the cloud. This class of embedded devices is now being called the Internet of
Things (IoT). Devices with processors that can power PCs, tablets, and Phones are the first wave
of devices that have connected to the cloud services. Cloud service providers are not focusing on
these devices, alone, but looking to go smaller. Microcontrollers (MCUs), computers on a chip, are
in everything from toys to appliances to industrial controls. There are new efforts to connect MCUs
to the cloud. Google has made investments in home automation. Amazon has taken stewardship
of the popular FreeRTOS kernel, which runs on many MCUs, and created Amazon Web Services
(AWS) FreeRTOS. The surge toward those 100+ billion Internet-connected devices has begun.

Outside of the .NET Micro Framework effort, Microsoft has never really focused on the MCU device
market. Recognizing an opportunity, Microsoft took some time to figure out a solution. With all the
internet security breaches in the news, Microsoft wanted to make sure that MCU devices
connecting to the cloud had the best in class security. Microsoft researched came up with The
Seven Properties of Highly Connected Devices. The research led to creating a custom silicon
solution with a security subsystem built in that implements certificate security from hardware to
application. The final result is a technology called Azure Sphere. Microsoft is working with different
silicon partners to create a variety of Azure Sphere MCUs. The first silicon to implement Azure
Sphere is the MediaTek MT3620. An MT3620 Reference Development Board (RDB) is now
available along with a public preview of the Azure Sphere SDK.

The purpose of this document is to provide a high-level overview of Azure Sphere, the MT3620
RDB, and what we have experienced, so far, with the Azure Sphere SDK.

Note: The Azure Sphere SDK is in preview as of this writing, so we will only cover what is currently
supported. More features and capabilities will be made available in future releases. GPIO and
UART are the only pin header IOs supported as of this writing.

Azure Sphere from 1000 Feet
The online Azure Sphere documentation covers the background and details of the technology. An
implementation for the Azure Sphere MCU consists of the following:

• Application Processor ARM Cortex-A running a custom Linux kernel (Azure Sphere OS).

• Microsoft Pluton security subsystem, which was developed out of the research of The
Seven Properties of Highly Connected Devices. This subsystem is the hardware-based
secured root of trust for Azure Sphere. This contains a security processor core with all the
encryption and cryptography support.

• Real-time processor(s) ARM Cortex-M I/O subsystem that can be configured by the silicon
vendor.

• Integrated 16MB (minimum) flash and 4MB (minimum) RAM.

• Connectivity / Communication – all Azure Sphere MCUs will come with wireless Internet
connection support.

• Multiplexed I/O – Azure Sphere will support a variety of I/O capabilities such as GPIO,
PWM, ADC, UART, SPI, I2C. Silicon vendors can configure how the I/O is implemented.

• Firewalls – each of the above subsystems is protected by a firewall to provide security of
access to the I/O only from the subsystem to which it is mapped.

For the application processor, a single application runs in an application container, which provides
access to Wi-Fi, I/O, Azure IoT, and the C library. Other OS services allow for over the air (OTA)

http://www.annabooks.com/
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/SevenPropertiesofHighlySecureDevices.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/SevenPropertiesofHighlySecureDevices.pdf
https://azure.microsoft.com/en-us/services/azure-sphere/
https://docs.microsoft.com/en-us/azure-sphere/product-overview/what-is

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
2

updates, networking management, device authentication, and application management. All of
these features run on a custom Linux kernel running in supervisor mode, which runs on top of a
security monitor that protects MCU resources.

MT3620 Chip Basics and the Reference Design Board (RDB)
MediaTek assisted with custom silicon for the research in The Seven Properties of Highly
Connected Devices. Out of this effort is the first Azure Sphere MCU, the MT3620. MT3620 supports
GPIO, UART, I2C, SPI, I2S, PWM and ADC. Only GPIO and UARTs are supported in the current
Azure Sphere SDK preview. The MT3620 RDB was created and made available to get developers
familiar with Azure Sphere. The board has several buttons and LEDs available for program access.
4 groups of 12-pin headers provide access to the different I/Os from the MCU.

Azure Sphere SDK and the C Programming Language
Over the past 25 years, Microsoft has worked very hard to develop Win32, .NET, C#, and now
UWP. The goal was to provide high-level language support that abstracts much of the memory
management tasks and to make GUI programming simpler. Azure Sphere doesn’t have a GUI and
doesn’t support any of the modern high-level languages. The application programming language
for Azure Sphere is C. More specifically, Azure Sphere supports a variant of POSIX C. One
interesting deviation is that “printf” function is replaced with a “log_debug” function to send
messages to the debug serial output rather than to a display. The SDK adds the Azure Sphere
libraries and example projects to Visual Studio 2017.

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
3

The online getting started guide (https://azure.microsoft.com/en-us/services/azure-sphere/get-
started/) provides the basic steps to set up and run applications on the MT3620 RDB. The example
projects cover GPIO, serial, and connecting to the Azure IoT HUB. The “Blank Application for
MT3620 RDB” provides a basic starting point to develop your own application. When the application
is run as is, it sends HelloWorld messages out the debug port which can then be seen in the Visual
Studio output pane. Below is the code listing for the Blank Application’s main.c file, and here is a
general overview of the Blank Application:

1. Lines 1-5 include the standard header libraries. If you want to see all the libraries available
just type in #include and IntelliSense will show all the available header files.

2. Line 11 includes the MT3620 RDB specific header to map the IO to names useful to code
with.

3. Line 19, Lines 24-28, and Lines 37-41 create a termination request event. Linux kernel can
raise this signal to terminate the application.

4. Lines 44-48 – The main loop which checks for the termination and outputs the HelloWorld
message. The loop keeps the application alive. If there was no loop the application would
just terminate. Within the loop, you can then add your own code to perform custom actions.

1. #include <signal.h>
2. #include <stdbool.h>
3. #include <stdlib.h>
4. #include <string.h>
5. #include <time.h>
6.
7. // applibs_versions.h defines the API struct versions to use for applibs APIs.
8. #include "applibs_versions.h"
9. #include <applibs/log.h>
10.
11. #include "mt3620_rdb.h"
12.
13. // This C application for the MT3620 Reference Development Board (Azure Sphere)
14. // outputs a string every second to Visual Studio's Device Output window
15. //
16. // It uses the API for the following Azure Sphere application libraries:
17. // - log (messages shown in Visual Studio's Device Output window during

debugging)
18.
19. static volatile sig_atomic_t terminationRequested = false;
20.
21. /// <summary>
22. /// Signal handler for termination requests. This handler must be async-

signal-safe.
23. /// </summary>
24. static void TerminationHandler(int signalNumber)

https://azure.microsoft.com/en-us/services/azure-sphere/get-started/
https://azure.microsoft.com/en-us/services/azure-sphere/get-started/

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
4

25. {
26. // Don't use Log_Debug here, as it is not guaranteed to be async signal safe
27. terminationRequested = true;
28. }
29.
30. /// <summary>
31. /// Main entry point for this sample.
32. /// </summary>
33. int main(int argc, char *argv[])
34. {
35. Log_Debug("Application starting\n");
36.
37. // Register a SIGTERM handler for termination requests
38. struct sigaction action;
39. memset(&action, 0, sizeof(struct sigaction));
40. action.sa_handler = TerminationHandler;
41. sigaction(SIGTERM, &action, NULL);
42.
43. // Main loop
44. const struct timespec sleepTime = {1, 0};
45. while (!terminationRequested) {
46. Log_Debug("Hello world\n");
47. nanosleep(&sleepTime, NULL);
48. }
49.
50. Log_Debug("Application exiting\n");
51. return 0;
52. }

Another very important file in the project is the App_manifest.json. Below is the code listing for this
file:

1. {
2. "SchemaVersion": 1,
3. "Name" : "BlankApp",
4. "ComponentId" : "553a769c-f3ea-44f8-b115-0a37f02d5e30",
5. "EntryPoint": "/bin/app",
6. "CmdArgs": [],
7. "TargetApplicationRuntimeVersion": 1,
8. "Capabilities": {
9. "AllowedConnections": [],
10. "Gpio": [],
11. "Uart": [],
12. "WifiConfig": false
13. }
14. }

Since security is a key foundation of Azure Sphere, applications are limited to accessing only the
IO that they need. Within the App_manifest.json, you set up what hardware you want the application
to have access to. It is easy to forget that this has to be set up when accessing hardware. If the
application tried to access IO that is not set up in the json file, a permission denied error will be
shown in the debug output:

Opening GPIO
ERROR: Could not open GPIO0: Permission denied (13).

USB Power HUB
Some laptops, like the Surface, have limited power output capability of their USB ports. Since there
could be various devices connected to the MT3620 RDB pin headers drawing current, we used a
powered USB hub (https://www.sabrent.com/product/HB-UMLS/4-port-usb-2-0-hub-power-
switches-black/) to power the Azure Sphere during our testing.

https://www.sabrent.com/product/HB-UMLS/4-port-usb-2-0-hub-power-switches-black/
https://www.sabrent.com/product/HB-UMLS/4-port-usb-2-0-hub-power-switches-black/

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
5

GPIO – Latency Test
The Blinky application demonstrates GPIO input and output using the onboard buttons and LEDs.
Knowing interrupt latency is an issue for some projects, so we modified the Blinky application so
that the GPIO0 pin is used as the input and GPIO1 pin is used as the output. We could then use
an Oscilloscope to measure the interrupt latency. A 74HC04 was used for a debounce circuit to
send an input signal to GPIO0, and an LED pulled to 3.3V was used for the GPIO1 output. The
3.3V supply was from the 3.3 Pin on Header 3. Here is the circuit:

Note: A diode would normally be put in parallel of the 47KΩ resistor, but the circuit worked fine as
is.

Interrupt handling at the application level is actually polling using the epoll Linux system call. GPIO
pins are linked to event handlers using the epoll_ctl call in the separate epoll_timerfd_utilities.c.
Here is the main.c application code listing used to perform the test:

1. #include <signal.h>
2. #include <stdbool.h>
3. #include <stdlib.h>
4. #include <string.h>
5. #include <time.h>
6. #include <unistd.h>
7. #include <errno.h>
8. #include "epoll_timerfd_utilities.h"
9.
10. // applibs_versions.h defines the API struct versions to use for applibs APIs.
11. #include "applibs_versions.h"
12. #include <applibs/log.h>
13. #include <applibs/gpio.h>
14.
15. #include "mt3620_rdb.h"
16.
17. // This C application for the MT3620 Reference Development Board (Azure Sphere)

1 2

74HC04

1
K

47K

S
W

1

3.3V

.1
u

F

GPIO0

D1

GPIO1
1K

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
6

18. // outputs a string every second to Visual Studio's Device Output window
19. //
20. // It uses the API for the following Azure Sphere application libraries:
21. // - log (messages shown in Visual Studio's Device Output window during

debugging)
22.
23. static int gpio0Fd = -1;
24. static int gpio1Fd = -1;
25. static int epollFd = -1;
26. static int gpioButtonTimerFd = -1;
27. static GPIO_Value_Type outValue = 0;
28. static GPIO_Value_Type buttonState = GPIO_Value_High;
29. static volatile sig_atomic_t terminationRequested = false;
30.
31. /// <summary>
32. /// Signal handler for termination requests. This handler must be async-

signal-safe.
33. /// </summary>
34. static void TerminationHandler(int signalNumber)
35. {
36. // Don't use Log_Debug here, as it is not guaranteed to be async signal safe
37. terminationRequested = true;
38. }
39. static void ButtonEventHandler()
40. {
41. // Check for a button press
42. GPIO_Value_Type newButtonState;
43. int result = GPIO_GetValue(gpio0Fd, &newButtonState);
44. if (result != 0) {
45. Log_Debug("ERROR: Could not read button GPIO: %s (%d).\n",

strerror(errno), errno);
46. terminationRequested = true;
47. return;
48. }
49.
50. if (newButtonState != buttonState) {
51.
52. if (newButtonState == GPIO_Value_High) {
53. // If the button has just been pressed, change the GPIO0 state
54. GPIO_GetValue(gpio1Fd, &outValue);
55. if (outValue == 0) {
56. GPIO_SetValue(gpio1Fd, GPIO_Value_High);
57. }
58. else {
59. GPIO_SetValue(gpio1Fd, GPIO_Value_Low);
60. }
61. }
62. }
63.
64. buttonState = newButtonState;
65. }
66.
67. /// <summary>
68. /// Main entry point for this sample.
69. /// </summary>
70. int main(int argc, char *argv[])
71. {
72. Log_Debug("Application starting\n");
73.
74. // Register a SIGTERM handler for termination requests
75. struct sigaction action;
76. memset(&action, 0, sizeof(struct sigaction));
77. action.sa_handler = TerminationHandler;

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
7

78. sigaction(SIGTERM, &action, NULL);
79.
80. Log_Debug("Opening GPIO\n");
81. gpio1Fd = GPIO_OpenAsOutput(MT3620_GPIO1, GPIO_OutputMode_PushPull,

GPIO_Value_Low);
82. if (gpio1Fd < 0) {
83. Log_Debug("ERROR: Could not open GPIO1: %s (%d).\n", strerror(errno),

errno);
84. terminationRequested = true;
85. }
86. gpio0Fd = GPIO_OpenAsInput(MT3620_GPIO0);
87. if (gpio0Fd < 0) {
88. Log_Debug("ERROR: Could not open GPIO0: %s (%d).\n", strerror(errno),

errno);
89. terminationRequested = true;
90. }
91.
92. Log_Debug("Create Epoll File Descripter and create handler\n");
93. epollFd = CreateEpollFd();
94. if (epollFd < 0) {
95. terminationRequested = true;
96. }
97. struct timespec buttonPressCheckPeriod = { 0, 1000000 };
98. gpioButtonTimerFd = CreateTimerFdAndAddToEpoll(epollFd,

&buttonPressCheckPeriod,
99. &ButtonEventHandler, EPOLLIN);
100. if (gpioButtonTimerFd < 0) {
101. terminationRequested = true;
102. }
103. Log_Debug("Ready\n");
104. // Main loop
105. while (!terminationRequested) {
106. if (WaitForEventAndCallHandler(epollFd) != 0) {
107. terminationRequested = true;
108. }
109. }
110. Log_Debug("Application exiting\n");
111. return 0;
112. }

Here is the App_manifest.json code listing showing GPIO 0 and 1 made available for the
application:

1. {
2. "SchemaVersion": 1,
3. "Name" : "MyLatency",
4. "ComponentId" : "2bde7b5a-7931-405e-875b-2cbb0b64fc38",
5. "EntryPoint": "/bin/app",
6. "CmdArgs": [],
7. "TargetApplicationRuntimeVersion": 1,
8. "Capabilities": {
9. "AllowedConnections": [],
10. "Gpio": [0,1],
11. "Uart": [],
12. "WifiConfig": false
13. }
14. }

Connecting an O-scope to the input and output and configuring the scope to single signal trigger,
the results of a press of the debounce circuit button shows the delay between the input signal going
high and the response to the output.

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
8

Performing several runs of this test shows that the response was around 25µs. Quite a few times
less than 25µs, and once in a while above 25µs (around 28 to 30µs). The application was running
in debug mode so the performance will be different when running in release mode. A key to this
test is the checking of the button state. Since there are two events with each press of the button:
high and low, the “buttonstate” check helps to avoid a change on the output when the input signal
goes low.

Serial – Serial Out to LCD
The “UART Sample for the MT3620 RDB” uses a loopback to test serial input and output. We
decided to create a serial output application. Since Azure Sphere doesn’t support a GUI, some
devices might use a 2-line Serial LCD for text output. We used an older Serial LCD from Sparkfun
(https://www.sparkfun.com/products/retired/9066). Sparkfun has a few other 3.3V Serial LCD
solutions available. The application is a variation of the “UART Sample for the MT3620 RDB”
project. Below is the code listing.

1. Lines 75-87 make all the available Serial LCD command available as constant char arrays.
The 0x00 is for termination.

2. Lines 91-97 configure the UART3
3. Lines 107-114 exercise some of the commands and send two messages to the Serial LCD.

The \0 is required in the message to terminate the call.

1. #include <signal.h>
2. #include <stdbool.h>
3. #include <stdlib.h>
4. #include <string.h>
5. #include <time.h>
6. #include <errno.h>
7. #include <unistd.h>
8.
9. // applibs_versions.h defines the API struct versions to use for applibs APIs.
10. #include "applibs_versions.h"
11. #include <applibs/log.h>
12. #include <applibs/uart.h>
13. #include <applibs/gpio.h>
14.
15. #include "mt3620_rdb.h"
16.
17. // This C application for the MT3620 Reference Development Board (Azure Sphere)
18. // outputs a string every second to Visual Studio's Device Output window
19. //
20. // It uses the API for the following Azure Sphere application libraries:

https://www.sparkfun.com/products/retired/9066

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
9

21. // - log (messages shown in Visual Studio's Device Output window during
debugging)

22.
23.
24. static int uartFd = -1;
25. static volatile sig_atomic_t terminationRequested = false;
26.
27.
28. /// <summary>
29. /// Signal handler for termination requests. This handler must be async-

signal-safe.
30. /// </summary>
31. static void TerminationHandler(int signalNumber)
32. {
33. // Don't use Log_Debug here, as it is not guaranteed to be async signal safe
34. terminationRequested = true;
35. }
36.
37. static void SendUartMessage(int uartFd, const char *dataToSend)
38. {
39. size_t totalBytesSent = 0;
40. size_t totalBytesToSend = strlen(dataToSend);
41. int sendIterations = 0;
42. while (totalBytesSent < totalBytesToSend) {
43. sendIterations++;
44.
45. // Send as much of the remaining data as possible
46. size_t bytesLeftToSend = totalBytesToSend - totalBytesSent;
47. const char *remainingMessageToSend = dataToSend +totalBytesSent;
48. ssize_t bytesSent = write(uartFd, remainingMessageToSend, bytesLeftToSend);
49. if (bytesSent < 0) {
50. Log_Debug("ERROR: Could not write to UART: %s (%d).\n", strerror(errno),

errno);
51. terminationRequested = true;
52. return;
53. }
54.
55. totalBytesSent += (size_t)bytesSent;
56. }
57.
58. Log_Debug("Sent %zu bytes over UART in %d calls\n", totalBytesSent,

sendIterations);
59. }
60.
61. /// <summary>
62. /// Main entry point for this sample.
63. /// </summary>
64. int main(int argc, char *argv[])
65. {
66. Log_Debug("Application starting\n");
67.
68. // Register a SIGTERM handler for termination requests
69. struct sigaction action;
70. memset(&action, 0, sizeof(struct sigaction));
71. action.sa_handler = TerminationHandler;
72. sigaction(SIGTERM, &action, NULL);
73.
74. //Define the control commands for the Sparkfun Serial LCD
75. char LCDCLEAR[] = { 0xFE, 0x01, 0x00 };
76. char LCDLINE1[] = { 0xFE, 0x80, 0x00 };
77. char LCDLINE2[] = { 0xFE, 0xC0, 0x00 };
78. char LCDMOVECURR1[] = { 0xFE, 0x14, 0x00 };
79. char LCDMOVECURL1[] = { 0xFE, 0x10, 0x00 };

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
10

80. char LCDSCROLLRIGHT[] = { 0xFE, 0x1C, 0x00 };
81. char LCDSCROLLLEFT[] = { 0xFE, 0x18, 0x00 };
82. char LCDVISUALON[] = { 0xFE, 0x0C, 0x00 };
83. char LCDVISUALOFF[] = { 0xFE, 0x08, 0x00 };
84. char LCDCURON[] = { 0xFE, 0x0E, 0x00 };
85. char LCDCUROFF[] = { 0xFE, 0x0C, 0x00 };
86. char LCDBLINKON[] = { 0xFE, 0x0D, 0x00 };
87. char LCDBLINKOFF[] = { 0xFE, 0x0C, 0x00 };
88.
89.
90. // Create a UART_Config object, open the UART and set up UART event handler
91. UART_Config uartConfig;
92. UART_InitConfig(&uartConfig); //Setup basic config before device specific

config
93. uartConfig.baudRate = 9600;
94. uartConfig.flowControl = UART_FlowControl_None;
95. uartConfig.parity = UART_Parity_None;
96. uartConfig.stopBits = UART_StopBits_One;
97. uartConfig.dataBits = UART_DataBits_Eight;
98.
99. //Open UART 3 (ISU3)
100. uartFd = UART_Open(MT3620_RDB_HEADER3_ISU3_UART, &uartConfig);
101. if (uartFd < 0) {
102. Log_Debug("ERROR: Could not open UART: %s (%d).\n", strerror(errno), errno);
103. terminationRequested = true;
104. }
105.
106. //now send the LCD commands and message
107. SendUartMessage(uartFd, &LCDCLEAR);
108. SendUartMessage(uartFd, &LCDCURON);
109. SendUartMessage(uartFd, &LCDBLINKON);
110. const char *messageToSend = "Welcome to\0";
111. SendUartMessage(uartFd, messageToSend);
112. SendUartMessage(uartFd, &LCDLINE2);
113. const char *messageToSend2 = "AzureSphere\0";
114. SendUartMessage(uartFd, messageToSend2);
115.
116. // Main loop
117. const struct timespec sleepTime = {1, 0};
118. while (!terminationRequested) {
119. Log_Debug("Hello world\n");
120. nanosleep(&sleepTime, NULL);
121. }
122.
123. Log_Debug("Application exiting\n");
124. return 0;
125. }

Here is the App_manifest.json code listing showing UART3 made available to the application:

1. {
2. "SchemaVersion": 1,
3. "Name" : "MySerialLCDazs",
4. "ComponentId" : "19d4a0fb-294d-4b08-96ca-ae366eeb1602",
5. "EntryPoint": "/bin/app",
6. "CmdArgs": [],
7. "TargetApplicationRuntimeVersion": 1,
8. "Capabilities": {
9. "AllowedConnections": [],
10. "Gpio": [],
11. "Uart": ["ISU3"],
12. "WifiConfig": false

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
11

13. }
14. }

When the application runs, the message appears on the Serial LCD display.

Multithreaded Applications using pthread
Since Azure Sphere implements POSIX-C, another fun test was to try running a multi-threaded
application using pthread (https://en.wikipedia.org/wiki/POSIX_Threads) /
(https://computing.llnl.gov/tutorials/pthreads/). The following code listing has a main thread and 2
separate threads to increment / decrement 3 integer variables.

1. Lines 33-39 and Lines 41-46 are the separate functions for incrementing x and
decrementing z respectively.

2. Lines 67-73 and Lines 74-80 create the threads to the functions.
3. Main thread will run and the application waits for the two other threads to finish.

1. #include <signal.h>
2. #include <stdbool.h>
3. #include <stdlib.h>
4. #include <string.h>
5. #include <time.h>
6. #include <pthread.h>
7. #include <unistd.h>
8. #include <errno.h>
9.
10. // applibs_versions.h defines the API struct versions to use for applibs APIs.
11. #include "applibs_versions.h"
12. #include <applibs/log.h>
13.
14. #include "mt3620_rdb.h"
15.
16. // This C application for the MT3620 Reference Development Board (Azure Sphere)
17. // outputs a string every second to Visual Studio's Device Output window
18. //
19. // It uses the API for the following Azure Sphere application libraries:
20. // - log (messages shown in Visual Studio's Device Output window during

debugging)
21.
22. static volatile sig_atomic_t terminationRequested = false;
23.
24. /// <summary>
25. /// Signal handler for termination requests. This handler must be async-

signal-safe.

https://en.wikipedia.org/wiki/POSIX_Threads
https://computing.llnl.gov/tutorials/pthreads/

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
12

26. /// </summary>
27. static void TerminationHandler(int signalNumber)
28. {
29. // Don't use Log_Debug here, as it is not guaranteed to be async signal safe
30. terminationRequested = true;
31. }
32.
33. void *inc_x(void *x_void_ptr) {
34.
35. int *x_ptr = (int *)x_void_ptr;
36. while (++(*x_ptr) < 15);
37. Log_Debug("x increment finished\n");
38. return NULL;
39. }
40.
41. void *dec_z(void *z_void_ptr) {
42. int *z_ptr = (int *)z_void_ptr;
43. while (--(*z_ptr) > 25);
44. Log_Debug("z decrement finished\n");
45. return NULL;
46. }
47.
48.
49. /// <summary>
50. /// Main entry point for this sample.
51. /// </summary>
52. int main(int argc, char *argv[])
53. {
54. Log_Debug("Application starting\n");
55.
56. // Register a SIGTERM handler for termination requests
57. struct sigaction action;
58. memset(&action, 0, sizeof(struct sigaction));
59. action.sa_handler = TerminationHandler;
60. sigaction(SIGTERM, &action, NULL);
61.
62. //setup the variables
63. int x = 0, y = 0, z=100;
64. Log_Debug("x: %d, y: %d, z: %d\n", x, y, z);
65.
66.
67. // Second thread
68. pthread_t inc_x_thread;
69. // create a second thread which executes inc_x(&x)
70. if (pthread_create(&inc_x_thread, NULL, inc_x, &x)) {
71. Log_Debug("Error creating thread %s (%d).\n", strerror(errno), errno);
72. return 1;
73. }
74. // Third thread
75. pthread_t dec_z_thread;
76. // create a third thread which executes dec_z(&z)
77. if (pthread_create(&dec_z_thread, NULL, dec_z, &z)) {
78. Log_Debug("Error creating thread %s (%d).\n", strerror(errno), errno);
79. return 1;
80. }
81.
82. // increment y to 100 in the first thread
83. while (++y < 100);
84. Log_Debug("y increment finished\n");
85.
86.
87. // wait for the second thread to finish
88. if (pthread_join(inc_x_thread, NULL)) {

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
13

89. Log_Debug("Error joining thread %s (%d).\n", strerror(errno), errno);
90. return 2;
91. }
92.
93. // wait for the thrid thread to finish
94. if (pthread_join(dec_z_thread, NULL)) {
95. Log_Debug("Error joining thread %s (%d).\n", strerror(errno), errno);
96. return 2;
97. }
98.
99. // show the final results
100. Log_Debug("\nx: %d, y: %d, z: %d\n", x, y, z);
101.
102.
103. Log_Debug("Application exiting\n");
104. return 0;
105. }

Here is the output when running the application under the debugger:

Application starting
x: 0, y: 0, z: 100
x increment finished
y increment finished
z decrement finished

x: 15, y: 100, z: 25
Application exiting

Child exited with status 0

Azure IoT HUB / Device Explorer
Azure Sphere wouldn’t be Azure Sphere without Azure. The last test we ran was to connect to
Azure IoT HUB following the “Azure IoT HUB Sample for the MT3620 RDB” project. After going
through the online documents to set up an IoT HUB, a provisioning service, installing Device
Explorer locally, and the certificate verification with the device, we were able to connect the Device
Explorer to the MT3620 RDB via Azure.

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
14

We could also remotely change the color of the LED per the online documents.

Conclusion: Our Take
One could go through a SWOT analysis or simply list the pros and cons of Azure Sphere, but we
will just provide our viewpoint of this preview release. First, we have been through many
preliminary, beta, and preview programs with Microsoft. Although, we are limited to GPIO, UART,
and WIFI, Azure Sphere SDK preview has been a pleasant surprise. No major crashes of the
development system and the MT3620 RDB appears to be a solid platform. Microsoft might be
learning some lessons from the past when taking a product from R&D into production. Testing the
other IO and the final release will be important next steps.

Second, Azure Sphere is pushing for the service model. In the ’90s, there was always humorous
comments about surfing the web on your appliances. Microsoft has used the washing machine as
an Azure Sphere example. Is there really a need to connect your washing machine to the Internet?
With so many companies moving to a service model, will anyone be willing to pay for a washing
machine service to monitor system health? Maybe, Azure Sphere would be a good solution and
service for laundromats and hotel guest laundry, but home consumers might not see the cost
benefit. There are many solutions beyond appliances that might take advantage of this solution.
Manufacturing control systems, building temperature controls and security, farming machinery, and
traffic control systems, and even public utilities could benefit from this solution.

Finally, in comparison to Windows IoT Enterprise, Windows IoT Mobile, and Windows IoT Core,
Azure Sphere is the smallest embedded/IoT offering from Microsoft. Will Windows IoT Core and
Azure Sphere cannibalize each other’s market space? That remains to be seen. Azure Sphere will
beat any hardware cost, but Windows IoT Core supports a GUI. With other players getting into the
low-end MCU game, Azure Sphere could carve out some space in the 32-bit MCU market if it gets
the proper internal development effort, backing, and execution.

As a side note, we do find it interesting that some folks at Microsoft reached out to us with concern
about our Open Software Stack for the Intel® Atom™ Processor book that covered creating a Linux
distribution with the Yocto Project. All the while, Microsoft was working on Azure which runs on
Linux, and now we have Azure Sphere. Interesting….

Version 1.3

Copyright © 2019 Annabooks, LLC. All rights reserved
15

Resources

https://azure.microsoft.com/en-us/services/azure-sphere/

https://docs.microsoft.com/en-us/azure-sphere/

https://www.mediatek.com/products/iot/azure-sphere

https://d86o2zu8ugzlg.cloudfront.net/mediatek-craft/documents/mt3620/MediaTek-MT3620-
Product-Brief-May2018.pdf

https://github.com/MicrosoftDocs/azure-sphere-issues/issues

Windows is a registered trademark of Microsoft Corporation
All other copyrighted, registered, and trademarked material remains the property of the respective owners.

https://azure.microsoft.com/en-us/services/azure-sphere/
https://docs.microsoft.com/en-us/azure-sphere/
https://www.mediatek.com/products/iot/azure-sphere
https://d86o2zu8ugzlg.cloudfront.net/mediatek-craft/documents/mt3620/MediaTek-MT3620-Product-Brief-May2018.pdf
https://d86o2zu8ugzlg.cloudfront.net/mediatek-craft/documents/mt3620/MediaTek-MT3620-Product-Brief-May2018.pdf
https://github.com/MicrosoftDocs/azure-sphere-issues/issues

