Nios[®] II ADC Implementation on Intel[®] MAX[®] 10-10M08 Evaluation Kit

By Sean D. Liming and John R. Malin Annabooks, LLC. – <u>www.annabooks.com</u>

November 2022

As one digs into all the features of the Intel MAX 10, the Analog to Digital Converter, ADC, provides a nice multi-channel solution for audio applications. Add the ADC to a Nios II processor design and you can write applications that can process analog data to perform other functions. The only catch is the lack of examples on how to use the Nios II HAL API to access the ADC. Internet search results provide limited examples and those examples shared are based on older versions of the development tools and software implementations. This paper's hands-on exercises look to provide solutions based on the latest Quartus release.

The Intel Max 10 10M08 Evaluation Kit will be used as the target for this project. The evaluation kit is a bare-bones platform that provides the basics for learning FPGA development. The smaller number of logic elements and RAM blocks in the Intel Max 10 means that a design is going to be tight and the small C library has to be used for application development. The platform makes it ideal for learning how to design and program with limited resources.

The design will take advantage of what the board provides. The system will read the voltage from the $10K\Omega$ trimmer pot and turn on red LEDs based on the voltage level. As the trimmer pot is adjusted from 0v to 3.3V the LEDs will be turned on or off based on the voltage level. A signal generator can be used if the $10K\Omega$ trimmer pot is not populated on the board. The JTAG will act as a UART for standard output so you can see the ADC values. Two different applications will be developed. One will be a single shot reading of the ADC, and the other will be a continuous-reading, interrupt-driven application.

Please see the article Intel® Quartus® Prime Lite and Nios® II SBT for Eclipse Installation Instructions on Annabooks.com to install the software needed for this hands-on exercise.

The Project Requirements:

- Intel Quartus Prime Lite Edition V21.0 and Nios® II SBT for Eclipse already installed.
- Intel® MAX® 10 10M08 Evaluation Kit and the schematic for the evaluation board is required. The schematic PDF file can be downloaded from the Intel FPGA website.
 - $\circ~$ A populated 10KoTrimmer pot for R94 on the schematic, part number 3362P-1-103TLF.
 - Alternative: Signal generator or other small analog signal source.
- Intel FPGA Programming cable USB Blaster II or EthernetBlaster II. The Intel® MAX® 10 - 10M08 Evaluation Kit doesn't have a built-in USB Blaster II onboard.
- Intel® Quartus® Prime Lite and Nios® II SBT for Eclipse Installation Instructions on Annabooks.com

Note: There are equivalent MAX 10 development and evaluation boards available. These boards can also be used as the target, but you will have to adjust to the available features on the board. Please make sure that you have the board's schematic files as these will be needed to identify pins.

1.1 Nios II ADC Project

The custom MCU will comprise the following IP blocks:

Nios II processor

Annabooks"

- Onchip RAM
- ADC
- Phase Lock Loop (PLL)
- Timer
- Sys ID
- JTAG UART

1.1.1 Create the Project

The first step is to create the design project.

- 1. Open Quartus.
- 2. Click on the New Project Wizard.

		*	New Project Wizard	2	Open Proj	ect		
	Compare Editions	Buy Software	Documentation	7 Training	Support	What's New	Notifications	
Tutorial Video: <u>286 Transcer</u>								
Tutorial Video: <u>Hyperflex Arc</u> Tutorial Video: <u>PCIeGen2 DM</u>								
Close page after project	load Igain							(intel)

- 3. Click Next to the Introduction dialog.
- 4. Select or create a project directory \NIOS2_ADC (Do not use the Quartus installation directory) and name the project: "NIOS2adc". Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project directory is a separate path from the Quartus installation files. Also, there can be no spaces in the name of the folders or projects.

- 5. Project Type: Empty project, click Next.
- 6. Add File: no files to add, click Next.
- 7. Family, Device & Board Settings: click the Board tab and select: MAX 10 FPGA 10M08 Evaluation Kit and click Next.

New I	Project Wizard							×
Fami	ly, Device & Board Settings							
Devic	e Board							
Selec	t the board/development kit you want to target	for compila	ation.					
Fami	ly: MAX 10	•	Develo	pment Kit:	Any			•
A <u>v</u> ail:	able boards:		,					
	Name	Vers	ion	Fami	ly	Device	Vendor	
=	Arrow MAX 10 DECA	0.9		MAX 10		10M50DAF484C6GES	Arrow	497(
=	BeMicro MAX 10 FPGA Evaluation Kit	1.0		MAX 10		10M08DAF484C8GES	Arrow	8064
=	MAX 10 DE10 - Lite	1.0		MAX 10		10M50DAF484C6GES	Altera	4976
==	MAX 10 FPGA 10M08 Evaluation Kit	1.0		MAX 10		10M08SAE144C8GES	Altera	8064
=	MAX 10 FPGA Development Kit	1.0		MAX 10		10M50DAF256C7G	Altera	4976
	MAX 10 NEEK	1.0		MAX 10		10M50DAF484I7G	Terasic	4976
=	Odyssey MAX 10 FPGA Kit	1.0		MAX 10		10M08SAU169C8GES	Macnica	8064
4								F
✓ c	reate top-level design file.							
Can't	find your board? Check the Design Store for a	ditions and	lsearch	for baseline	underl	Design Examples		
Cart	The year obards encer are <u>oranger otore</u> for at		Concil	. or basedine	anach	esser examples.		
				_				
<u>H</u> elp	p				< <u>B</u> ack	<u>N</u> ext >	Einish	Cancel

- 8. EDA Tools: click Next.
- 9. Summary: click Finish

Note: The actual MAX 10 on our board is the 10M08SAE144C8G, thus it is not an Engineering Sample (ES). The next two steps change the device to the production device. Depending on the hardware that you use, your experience might be different. These next two optional steps change the device.

- 10. In the project navigation pane on the left, right-click on 10: 10M08SAE144C8GE, and select Device from the context menu.
- 11. In the Available devices, scroll down and select the 10M08SAE144C8G, click OK.

Device	Board							
Select the fa You can ins To determin	amily and de tall addition ne the versio	vice you want to ta al device support v n of the Quartus P	arget for c vith the In rime soft	compilation. Istall Devices co ware in which yo	mmand on t our target dev	he Tools m /ice is supp	enu. orted, r	refer to the <u>Device Support List</u> webpa
Device fami	ly				Show in 'A	wailable de	vices' li	st
Eamily:	amily: MAX 10 (DA/DF/DC/SA/SC/SL)					2	Any	*
Dev <u>i</u> ce:	Device: All 👻					Pin <u>c</u> ount: Any		*
Farget device					Core sp	Core speed grade: Any		•
 <u>Auto</u> <u>Specif</u> 	device selec fic device se	ted by the Fitter lected in 'Available	devices'	list	Name fi ✔ S <u>h</u> o	lter: w advanced	device	25
O Other	: n/a				Device an	id Pin Optic	ons	
A <u>v</u> ailable de	vices:				1	1		
Na	me	Core Voltage	LEs	Total I/Os	GPIOs	Memor	y Bits	Embedded multiplier 9-bit elem
10M08SAE	144C8G	3.3V	8064	101	101	387072		48
TOMOSSAE	144C8GES	3.3V	8064	101	101	387072		48
TUMUOSAE	1441/G	3.3V	8064	101	101	387072		40

1.1.2 Create the Design in Platform Designer

Quartus supports many design types to create an FPGA design. The Platform Designer tool will be used for this hands-on exercise. Platform Designer makes it easy to add already-built IP blocks and interconnect them.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon from the toolbar.

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform Designer makes it easy to add IP blocks and make interconnections between the blocks.

2. The top left pane contains the IP Catalog with all the available IP blocks that come with Quartus Prime. In the search box, type Nios.

📂 IP Catalog 🛛 🕄	- d° =
	× 🕸
Project 	nt ug and Verification s II Custom Instruction Master BFM Intel FPGA IP s II Custom Instruction Slave BFM Intel FPGA IP ipherals tom Instructions swap stom Instruction Interconnect stom Instruction Master Translator stom Instruction Slave Translator ating Point Hardware ating Point Hardware 2 ressors Processor
<	>
New Edit	🕂 Add

- 3. Expand the Processors and Peripherals and Embedded Processors branches and doubleclick on the Nios II Processor.
- 4. This will open the Nios II Configuration page. The first tab is to select the type of core Nios II/e or Nios II/f. We will keep the defaults for now. Click Finish.

Annabooks

* Nios II Processor - nios2_gen2_0					×
Nios II Processor					
MegeCore* altera_nios2_gen2					Documentation
* Block Diagram	Main Vectors	Caches and Memory Interfaces Arithmetic Instru	rctions MMI Land MPU Settions TTAG Debug Adv	varced Features	·
Show signals	T Select an	Implementation	actions (Find and Find Sectings) (The Debug) Ha	ranceu r estures	
nios2_gen2_0	Nios II Core:	○ Nios II/e			
		Nios II/f			
cisc clock avaion data master					
reset avalon instruction_master		Nios II/e	Nios II/f		
debug mem slave	Summary	Resource-optimized 32-bit RISC	Performance-optimized 32-bit RISC		
avalon nios_oustorm_instruction	Features	JTAG Debug ECC RAM Protection	JTAG Debug Hardware Multiply/Divide		
attera_mos2_gen2			Instruction/Data Caches Tightly-Coupled Masters		
			ECC RAM Protection		
			Shadow Register Sets		
			MMU		
	RAM Usage	2 + Options	2 + Options		
From: nios2 gen2 0: Instruction Cache is larger than the Instruction Address. Please reduce	the Instruction Car	he Size, Current Tao Size is 0			
Error: nios2_gen2_0: Reset slave is not specified. Please select the reset slave					
Error: nios2_gen2_0: Exception slave is not specified. Please select the exception slave					
l					Cancel Finish

- 1. The processor will be added to the design. Right-click on the name nios2_gen2_cpu, and rename it to nios2.
- 2. Now let's add the RAM IP block. In the IP Catalog enter RAM in the search box.
- 3. Double-click on On-chip Memory (RAM or ROM) in the Intel FPGA IP.

4. The configuration page will appear. Change the Total memory size to 16384. We need more memory to run this application.

Size				
Enable different width for Dual-port a	ccess			
Slave S1 Data width:	32 🗸			
Total memory size:	16384	bytes		
Minimize memory block usage (may impact fmax)				
Read latency				

5. Uncheck the box for "Initialize memory content" and click Finish.

Annabooks"

 Memory initialization 	
Initialize memory content	
Enable non-default initialization fil	e
Type the filename (e.g: my_ram	n.hex) or select the hex file using the file browser button.
User created initialization file:	onchip_mem.hex
Enable Partial Reconfiguration Init	tialization Mode

- The On-chip Memory (RAM or ROM) in the Intel FPGA IP will be added to the design. Right-click on the name, and rename it to onchip_RAM
- 7. In the IP Catalog search box, type adc.

Platform Designer - unsaved.qsys* (E:\FPGA\Intel Max 10 FPGA Evaluation I
File Edit System Generate View Tools Help
📫 IP Catalog 🛛 🔤 🗖
🔍 adc 🗙 🔯
Project
Peripherals Modular ADC core Intel FPGA IP Modular Dual ADC core Intel FPGA IP Modular Dual ADC core Intel FPGA IP Generic IO ADC Controller for DE-series Boards
New Edit

8. Expanding the branches reveals the available IP. Double-click on Modular ADC core Intel FPGA IP. This will add the ADC IP to the design and open the Modular ADC core Intel FPGA IP configuration page.

Annabooks

- Modular ADC core Intel FPGA IP - modular_adc_0	x
Modular ADC core Intel FPGA IP	
MegeCore' altera_modular_adc	Documentation
Block Diagram	General
Show signals	
modular adc 0	Core Variant: Standard sequencer with Avalon-MM sample storage
hiddular_adc_o	Debug Path: Disabled ~
clock clock interrupt sample_store_irg	Y Clocks
reset_sink reset	ADC Sample Rate: 1 Mhz ~
adc_pll_clock clock	ADC Input Clock: 10 Mhz 🗸
adc_pl_locked conduit	Treference Voltage
sequencer_csr avalon	Reference Voltage Source: External V
sample_store_csravalon	External Reference Voltage: 2.5 v
altera modular ado	V Lonic Simulation
	Enable user created expected output file: Disabled v
	Channels Sequencer
	CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 TSD
	· Channel 0
	Use Channel 0 (Dedicated analog input pin - ANAIN)
Warning: modular_adc_0: Sequencer Slot 1 is pointing to Channel whice Warning: modular_adc_0: Error converting csd slot value 30 to strip	n is not available in current selected device part. Hease re-configure Sequencer Slot 1. no autout code.
Harring, Housing and all value of to still	ng unaport associ
	Fauld Ende
	Cancel minish

- 9. In the General tab, set the following:
 - a. Core Variant: Standard sequencer with Avalon-MM sample storage.
 - b. Debug Path: Disabled.
 - c. ADC Sample Rate: 1 MHz.
 - d. ASC Input Clock: 10 MHz.
 - e. Reference Voltage Source: External.
 - f. Internal reference Voltage: 3.3V.
 - g. Enable user-created expect output file: Disabled.

The ADC IP block supports several implementation variants. The one chosen will use the MAX 10's internal RAM to save the data. The evaluation kit has a 2.5 V reference voltage for the ADC, but the 10K trimmer pot can supply 3.3 to the channel so we will use the internal 3.3V.

General	
Core Configuration	
Core Variant:	Standard sequencer with Avalon-MM sample storage \sim
Debug Path:	Disabled 🗸
▼ Clocks	
ADC Sample Rate:	1 Mhz 🗸
ADC Input Clock:	10 Mhz \sim
Reference Voltage	
Reference Voltage Source:	Internal 🗸
Internal Reference Voltage:	3.3 V V
Logic Simulation	
Enable user created expected output file:	Disabled 🗸
Channels Sequencer	
CH0 CH1 CH2 CH3 CH4 CH5 CH6	5 CH7 CH8 TSD
Channel 0	
Use Channel 0 (Dedicated analog inp	out pin - ANAIN)

10. In the Channels tab, click on CH7, and check the "Use Channel 7" box

Channels	Sequence	er					
CH0 CH	H1 CH2	CH3 C	I4 CH5	CH6	CH7	CH8 T	SD
Char	nel 7						
U:	se Channe	17					

- 11. Click on the Sequencer tab.
- 12. Set the number of slots used to 1.
- 13. Set Slot 1: to CH7

Channels Sequen	icer
Conversion Sector	equence Length
Number of slot us	sed: 1 ~
Conversion Sector	equence Channels
Slot 1 :	CH 7 🗸

- 14. Click Finish.
- 15. The ADC will be added to the design. In the System Contents, you will see the ADC has been added to the list of devices to be interconnected. Right-click on the name and rename the device to ADC0.
- 16. Now we need to add the PPL. In the IP Catalog, type pll in the search.
- 17. A number of different PLLs appear in the branches, but only a few are available. Doubleclick on the ALTPLL Intel FPGA IP to add it to the design.

18. The PLL is added, and the ALTPLL Intel FPGA IP configuration page appears. The configuration page has a workflow-like presentation, 1 Parameter Setting contains the general settings for the PLL. For the "What is the frequency of the inclk0 input?" set the value to 50.000 MHz. The evaluation kit has a 50 MHz oscillator.

Annabooks-

si,	Mega	Wizard Plug-In Manager [p	age 1 of 11]						?	×
•	2	ALTPLL								
1	Parame Settings	ter 2 PLL s Reconfiguration	3 Output Clocks	4 EDA						
G	General/N	Modes / Inputs/Lock	Bandwidth	i/ss >	Clock switchover	\geq				
		ALTPLL1656643596187	7884				Currently selected device	family: MAX 10	roject/defa	 ault
	inclk0	inclk0 frequency: 50.000 MHz Operation Mode: Normal Clk Ratio Ph (dg) DC (%) c0 1/5 0.00 50.00	c0 locked	Able to	implement the req	uested PLL				
	l		MAX 10	Whic	h device speed gra	de will you be using	?	Any	•	
				 	Jse military tempera	ature range devices	only			
				Wha	t is the frequency o	of the inclk0 input?		50.000	MHz	•
				⊑ s	Set up PLL in LVDS n	node	Data rate:	Not Available 💌	Mbps	
				PLL T	ype	1				

- 19. Click Next.
- 20. Uncheck the box next to "Create an 'areset' input to asynchronously reset the PLL". This signal is not needed for this design, and this will remove one warning from the list. Leave Create 'locked' output checked.

☆ MegaWizard Plug-In Manager [page 2 of 11]	?)	\times
ALTPLL		
Parameter Settings 2 PLL Reconfiguration 3 Output Clocks 4 EDA		
General/Modes / Inputs/Lock / Bandwidth/SS / Clock switchover /		
ALTPLL 1656643596187884 inclk0 frequency: 50.000 MHz Operation Mode: Normal Colt Ratio Ph (dg) DC (%) oo 1/5 0.00 50.00 MAX 10 Able to implement the requested PLL Optional Inputs Create an 'areset' input to asynchronously reset the PLL Create an 'areset' input to selectively enable the phase/frequency detector Lock Output Create in 'pfdena' input to selectively enable the phase/frequency detector Lock Output Create investor output Enable self-reset on loss lock Advanced Parameters Using these parameters is recommended for advanced users only Create output file(s) using the 'Advanced' PLL parameters		

- 21. Click on 3, Output Clocks tab.
- 22. There are 5 output clock settings. All we need is clk c0. Under clk c0, click the radio button next to Enter output clock frequency.
- 23. Set the Requested Settings to 10.00 MHz. This is to match the input clock frequency of the ADC.

Annabooks-

🔌 MegaWizard Plug-In Manager [page 6 of 11		? ×
Parameter PLL Output Settings Reconfiguration Clocks	4 EDA	
dkc0 $dkc1$ $dkc2$ $dkc3$	> dk c4 $>$	
ALTPLL1656643596187884 inclk0 frequency: 50.000 MHz Operation Mode: Normal Clik Ratio Ph (dg) DC (%) o0 1/5 0.00 50.00 MAX	Clock duty cycle (%)	ctual Settings 10.000000 1 5 0.00 50.00

- 24. Click Finish.
- 25. The PLL is added to the design. Rename the PLL as pll_0.
- 26. In the IP Catalog search, enter timer.
- 27. Double-click on the Interval Timer Intel FPGA IP.

📩 IP Catalog 🛛		- 🗗 🗖
🔍 timer		× 🔯
Project 	nent Peripherals rval Timer Intel FPGA IP	

- 28. Keep the settings as they are and click Finish.
- 29. In the IP Catalog search, enter system ID.
- 30. Double-click on the System ID Peripheral Intel FPGA IP.

- 31. A configuration page will appear. There are no changes to be made. Click Finish.
- 32. In the IP Catalog search, enter uart.
- 33. Double-click on the JTAG UART Intel FPGA IP.

● uart Project Image: Serial ● Interface Protocols ● Serial ● Interface Protocols ● Interface Protocols	📩 IP Catalog 🛛	_ ⊏ ⊏
Project New Component Library -Interface Protocols -Serial UART Intel FPGA IP UART (RS-232 Serial Port) Intel FPGA IP UART (RS-232 Serial Port) Intel FPGA IP -University Program -Communications - IrDA UART RS232 UART	🔍 uart	×
	Project Wew Compor Library -Interface Protoco -Serial UAR -University Progra -Communicatio RS23	P
New Edit	New Edit	🕂 Add

Copyright © 2022 Annabooks, LLC. All rights reserved Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

- 34. A configuration page will appear. There are no changes to be made. Click Finish.
- 35. In the IP Catalog, enter pio in the search box.
- 36. Add the PIO (Parallel I/O) Intel FPGA IP to the design.

📩 IP Catalog 🛛		- d 🗆
🔍 PIO		×
Project	nent	
Library		
Interface Protoco	ols	
-PCI Express		
⊡QSYS Ex	ample Designs	
• (i4b or 128b PIO AVST	
Processors and P	eripherals	
- Peripherals		
• PIO	(Parallel I/O) Intel FPGA IP	

- 37. In the configuration page, set Width to 5, leave the Direction as Output, and set the Output Port Reset Value to 0x1f. Since the LEDs are active low, the value turns all 5 LEDs off on startup.
- 38. Click Finish.

➡ PIO (Parallel I/O) Intel FPGA IP - pio_0						
PIO (Parallel I/O) Intel FPGA IP altera_avalon_pio						
Block Diagram						
Show signals	Width (1-32 bits):	-				
	Disation	5				
pio O	Direction:	OBidir				
		◯ Input				
clock		◯ InOut				
reset		Output				
s1 avalon	Output Port Reset Value	0-000000000000000000000000000000000000				
external_connection						
conduit	Output Register					
attera_avalon_pio	Enable individual bit	setting/dearing				
	Edge capture register	er				
	Synchronously captu	ire				
	Edge Type:	RISING 🗸				
	Enable bit-clearing for	or edge capture register				
	Interrupt					
	Generate IRQ					
	IRQ Type:	LEVEL 🗸				
	Level: Interrupt CPU wh	nen any unmasked I/O pin is logic true				
	Edge: Interrupt CPU wh	en any unmasked bit in the edge-capture				
	register is logic tide. Ava	induce which synchronious capture is chapicu				

- 39. The PIO will be added to the design. Rename the PIO to pio_0.
- 40. For the PIO exernal_connection, under pio_0, double-click on the "Double-click to export" in the exernal_connection row and Export column and set the value to led5. This will provide a base name for connecting the signals to the PINs on the chip. The connection will be made in PIN Planner.
- 41. Now we need to wire the IP blocks together. The picture below shows all the wiring connections for the design.

Annabooks-

	System	Contents 🔀 Address Map 🛛	Interconnect Requirements	s 🙁		
	X	System: NIOS2adcMCU	Path: pio_0.clk			
+.	Use	Connections	Name	Description	Export	Clock
1.			⊟ clk_0	Clock Source		
×			- dk_in	Clock Input	clk	exported
		· · · · · · · · · · · · · · · · · · ·	dk_in_reset	Reset Input	reset	
			dk	Clock Output	Double-click to export	clk_0
▲			dk reset	Reset Output	Double-click to export	_
			⊡ Щ nios2	Nios II Processor		
-	-	-	- clk	Clock Input	Double-click to export	clk_0
T		•	reset	Reset Input	Double-click to export	[clk]
			data_master	Avalon Memory Mapped Master	Double-click to export	[clk]
			instruction_master	Avalon Memory Mapped Master	Double-click to export	[clk]
			irq	Interrupt Receiver	Double-click to export	[clk]
			debug_reset_request	Reset Output	Double-click to export	[clk]
		│ ┃ │ ♦ ♦ │ 	debug_mem_slave	Avalon Memory Mapped Slave	Double-click to export	[clk]
			custom_instruction_m	Custom Instruction Master	Double-click to export	
			onchip_RAM	On-Chip Memory (RAM or ROM) Intel		
		╋┼┼┼┼┼┼┼┼	dk1	Clock Input	Double-click to export	clk_0
		▏▋│∳┿╎────	s1	Avalon Memory Mapped Slave	Double-click to export	[clk1]
			reset1	Reset Input	Double-click to export	[clk1]
	\checkmark		⊡ 변 adc_0	Modular ADC core Intel FPGA IP		
		+ + + + + + + + + + + + + + + + +	clock	Clock Input	Double-click to export	clk_0
			reset_sink	Reset Input	Double-click to export	[clock]
			adc_pll_clock	Clock Input	Double-click to export	pll_0_c0
			- adc_pll_locked	Conduit	Double-click to export	
		┃ ♦ ↔	sequencer_csr	Avalon Memory Mapped Slave	Double-click to export	[clock]
			sample_store_csr	Avalon Memory Mapped Slave	Double-click to export	[clock]
			sample_store_irq	Interrupt Sender	Double-click to export	[clock]
			□ pll_0	ALTPLL Intel FPGA IP		
		∲ 	inclk_interface	Clock Input	Double-click to export	clk_0
			inclk_interface_reset	Reset Input	Double-click to export	[inclk_interf
			pll_slave	Avalon Memory Mapped Slave	Double-click to export	[inclk_interf
			c0	Clock Output	Double-click to export	pll_0_c0
		•	- locked_conduit	Conduit	Double-click to export	
	\checkmark		⊡ timer_0	Interval Timer Intel FPGA IP		
			• dk	Clock Input	Double-click to export	clk_0
			reset	Reset Input	Double-click to export	[clk]
			s1	Avalon Memory Mapped Slave	Double-click to export	[clk]
			irq	Interrupt Sender	Double-click to export	[clk]
			Sysid_qsys_0	System ID Peripheral Intel FPGA IP		
			CIK	Clock Input	Double-click to export	CIK_U
			reset	Reset Input	Double-click to export	[CIK]
			control_slave	Avaion Memory Mapped Slave	Double-click to export	[CIK]
			⊡ jtag_uart_0	JTAG UART Intel FPGA IP		
			CIK	Clock Input	Double-click to export	CIK_U
			reset	Reset Input	Double-click to export	[CIK]
			avaion_jtay_slave	Interrupt Sender	Double-click to export	[cik]
					Double-Click to export	[civ]
			ck	Clock Input	Double-click to export	clk 0
			reset	Reset Input	Double-click to export	[dk]
		•	st	Avalon Memory Mapped Slave	Double-click to export	[clk]
		0-0	external connection	Conduit	led5	C-my
		Y C				

42. Let's assign a base address. From the menu, select System->Assign Base Address. This will remove a number of errors from the message box. You will see the base address values for each IP change in the System Contents tab.

- 43. Finally, let's set the reset and exception vector addresses. Double-click on the nios2 to open the configuration page.
- 44. Click on the Vectors tab.
- 45. Change the Reset vector memory drop-down to onchip_RAM.s1.
- 46. Change the Exception vector memory drop-down to onchip_RAM.s1.

💁 Parameters 🛛		
System: NIOS2adcMCU Path: nios2		
Nios II Processor		
altera_nios2_gen2		Detai
Main Vectors Caches and Memory Inter	rfaces Arithmetic Instructions MMU and MPU	Settin
Reset Vector		
Reset vector memory:	onchip_RAM.s1 🗸	
Reset vector offset:	0x0000000	
Reset vector:	0x00004000	
Exception Vector		
Exception vector		
Exception vector memory:	onchip_RAM.s1 v	
Exception vector offset:	0x0000020	
Exception vector:	0x00004020	
Fast TLB Miss Exception Vector		
Fast TLB Miss Exception vector memory:	None	
Fast TLB Miss Exception vector offset:	0x0000000	
Fast TLB Miss Exception vector:	0x0000000	

- 47. Click on Generate HDL...
- 48. Keep the defaults and click the Generate button.
- 49. A dialog will appear asking you to save the design, click Save.
- 50. Give the name as NIOS2adcMCU.qsys, and click Save.
- 51. Once the save has completed, click Close.
- 52. The generate process kicks off. The processes should succeed, click Close.

Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

Copyright © 2022 Annabooks, LLC. All rights reserved

- 53. Click Finish to close the design.
- 54. Quartus then reminds you to add the new design to the project. Click Ok.
- 55. In the Project Navigator, click on the drop-down and select Files.
- 56. Right-click on Files and select Add/Remote Files in Project.

roject Navigator 📃	Files		
File Add/Rem	nove <u>F</u> iles ir	n Project	

- 57. A Settings NIOS2adc page appears with Files on the left highlighted. Click the three dots browse button for File name, and navigate to the \NIOS2_ADC\NIOS2adcMCU\synthesis folder.
- 58. Click on the NIOS2adcMCU.qip file and click open.
- 59. Click OK to close the Settings- NIOS2adc page. The qip file is added to the Project navigator list. Underneath are all the Verilog files that were generated by Platform Designer.

- 60. In the Project Navigator, Right-click on the NIOS2adcMCU/synthesis/NIOS2adcMCU.v file and select Set as Top-Level Entity from the context menu.
- 61. Save the project.
- 62. In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The analysis will take some time, and it should succeed in the end. This step helps to diagnose any errors and finds the Node Names for the pin assignments in the next step.
- 63. Once the process completes, the pin assignments need to be set. From the menu, select

Assignments->Pin Planner or click on the icon from the toolbar. The analysis just run populated the Node Name list at the bottom of the Pin Planner dialog.

64. Using the board schematic, locate the pins for the SW1 and the 50MHz clock. Set the Location values for both node names. For the MAX 10 – 10M08 Evaluation Board, these values are as follows:

Node Name	Location
SW1	PIN_121
Clk_50MHz:	PIN_27
altera_reserved_tck	PIN_18
altera_reserved_tdi	PIN_19
altera_reserved_tdo	PIN_20
altera_reserved_tms	PIN_16
Led5_export[4]	PIN_141
Led5_export[3]	PIN_140
Led5_export[2]	PIN_135
Led5_export[1]	PIN_134
Led5_export[0]	PIN_132

65. Set the I/O Standard to 3.3V-LVTTL for all pins except JTAG. You can see from the schematic that the I/O are all tied to 3.3V.

8 0 1	Named: * 👻 Edit: X 🗸								
	Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard		
	in altera_reserved_tck	Input	PIN_18	1B	B1_N0	PIN_18	2.5 V Sc Trigger		
	💾 altera_reserved_tdi	Input	PIN_19	1B	B1_N0	PIN_19	2.5 V Sc Trigger		
	out altera_reserved_tdo	Output	PIN_20	1B	B1_N0	PIN_20	2.5 V		
	in altera_reserved_tms	Input	PIN_16	1B	B1_N0	PIN_16	2.5 V Sc Trigger		
	in_ clk_clk	Input	PIN_27	2	B2_N0	PIN_27	3.3-V LVTTL		
	out led5_export[4]	Output	PIN_141	8	B8_N0	PIN_141	3.3-V LVTTL		
	ut led5_export[3]	Output	PIN_140	8	B8_N0	PIN_140	3.3-V LVTTL		
	out led5_export[2]	Output	PIN_135	8	B8_N0	PIN_135	3.3-V LVTTL		
	ut led5_export[1]	Output	PIN_134	8	B8_N0	PIN_134	3.3-V LVTTL		
	ut led5_export[0]	Output	PIN_132	8	B8_N0	PIN_132	3.3-V LVTTL		
Pins	in reset_reset_n	Input	PIN_121	8	B8_N0	PIN_121	3.3-V LVTTL		
H,	< <new node="">></new>								

66. Close the Pin Planner when finished. The diagram gets updated with the pin numbers.

67. Save the project.

Note: A best practice at this point would be to make a backup of the project folder. Quartus can crash unexpectedly, since it appears to be written in Java. Archiving is simple. From the menu, Project->Archive Project.

68. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

Start from the context menu, or you can click on the symbol in the toolbar. The design should compile successfully.

low Status	Successful - Sun Jul 10 18:09:58 2022
Quartus Prime Version	21.1.0 Build 842 10/21/2021 SJ Lite Edition
Revision Name	NIO52adc
op-level Entity Name	NIOS2adcMCU
amily	MAX 10
Device	10M085AE144C8G
Timing Models	Final
Fotal logic elements	3,659 / 8,064 (45 %)
Fotal registers	2174
Total pins	7 / 101 (7 %)
Total virtual pins	0
otal memory bits	129,728 / 387,072 (34 %)
mbedded Multiplier 9-bit elements	6/48(13%)
Total PLLs	1/1(100%)
JFM blocks	0/1(0%)
ADC blocks	1 / 1 (100 %)

1.1.3 Eclipse Application 1: adcLEDLevels One Shot Read

Now, we are ready to create an application to run on the Nios II processor. The application will configure the ADC for a single read of the input analog signal and then light the LEDs based on the resulting voltage value. The one-shot solution is good when you only need to take a reading once in a while. For example, reading the TSD to get the FPGA temperature.

- 1. In Quartus Prime, from the menu, select Tools->Nios II Software Build Tools for Eclipse.
- Eclipse will open and ask for the root workspace directory. Set the workspace folder to something like \Documents\FPGA\Apps, and hit ok. It doesn't matter the location of the workspace, since the actual applications for the project will exist within the \NIOS2_UART\software folder.
- 3. In Eclipse, from the menu, select File->New-> Nios II Application and BSP from Template.

ile	Edit	Navigate	Search	Project	Run	Nios II	Wind	low	Help
	New					Alt+Shift	t+N>	C++	Nios II Application and BSP from Template
	Open	File						C++	Nios II Application
	Close					Ctrl	+W		Nios II Board Support Package Nios II Library
	Close	All			(Ctrl+Shift	+W		Project
	Save					Ct	rl+S		
	Save A	s							Other Ctrl+N
	Save A	JI.				Ctrl+Shif	t+S		

- 4. The first step is to open the SOPC file that was generated for the hardware design. Click on the three dots button.
- 5. Navigate to the \NIOS2_ADC folder and open the NIOS2adcMCU.sopcinfo file. The CPU name will reflect the name we gave the CPU in Platform Builder.
- 6. Enter the project name: adcLEDLevels.
- 7. In the Project Template, select Blank Project.
- 8. Click Finish.

Copyright © 2022 Annabooks, LLC. All rights reserved Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks

Fixed Nios II Application and BSP from Template			
Nios II Software Examples			
Create a new application and board support package based on a software example template			
Target hardware information			
SOPC Information File name: E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\NIOS2_ADC\NIOS2adc			
CPU name: v			
Application project			
Project name: adcLEDLevels			
Use default location Project location: E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\NIOS2_ADC\software\adcLEDL; Project template			
Templates Template description			
Blank Project Board Diagnostics Count Binary Float2 Functionality Float2 GCC Float2 Performance Hello Freestanding Hello World Small Memory Test Memory Test Memory Test Small			
Output Seck Next > Finish Cancel			

Two projects will be generated. The adcLEDLevels _bsp is generated to give you the HAL drivers and API based on the hardware design. The adcLEDLevels is the application that will run on the hardware.

 We need to edit the BSP to use the small C library. The BSP Editor tool allows you to edit the settings.bsp file to make specific changes for the target. Right-click on adcLEDLevels_bsp and select Nios II->BSP Editor from the context menu.

The BSP Editor opens and opens the settings.bsp file automatically. If you started the BSP Editor from the main menu, you would have to manually navigate to open the file. In the BSP Editor, you can see this is where the selection of the small_c library and reduced drivers are set. The standard input, output, and error ports to handle messages are already set to jtag_uart_0.

10. Tick the box for enable_small_c_library and enable_reduced_device_drivers, and click Generate to make the changes.

Copyright © 2022 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks

11. Click Exit when finished.

The adcLEDLevels_bsp contains the key files that will help with filling in the code to access the ADC and PIO ports. System.h contains the definitions that can be used in Platform Designer to set up the ADC and PIO. The ADC list is very long as the SampleStore and Sequencer define multiple values.

h syst	em.h 🕱
1900	/*
191	* add 0 sample store csr configuration
192	*
193	*/
194	7
195	#define ADC 0 SAMPLE STORE CSR BASE 0x9000
96	#define ADC 0 SAMPLE STORE CSR CORE VARIANT 0
197	#define ADC 0 SAMPLE STORE CSR CSD LENGTH 1
98	#define ADC 0 SAMPLE STORE CSR CSD SLOT 0 "CH7"
199	#define ADC 0 SAMPLE STORE CSR CSD SLOT 1 "CHO"
200	#define ADC 0 SAMPLE STORE CSR CSD SLOT 10 "CHO"
201	#define ADC 0 SAMPLE STORE CSR CSD SLOT 11 "CHO"
202	#define ADC 0 SAMPLE STORE CSR CSD SLOT 12 "CHO"
203	#define ADC 0 SAMPLE STORE CSR CSD SLOT 13 "CHO"
04	#define ADC 0 SAMPLE STORE CSR CSD SLOT 14 "CHO"
0.5	#define ADC 0 SAMPLE STORE CSR CSD SLOT 15 "CHO"
206	#define ADC 0 SAMPLE STORE CSR CSD SLOT 16 "CHO"
207	#define ADC 0 SAMPLE STORE CSR CSD SLOT 17 "CHO"
208	#define ADC 0 SAMPLE STORE CSR CSD SLOT 18 "CHO"
209	#define ADC 0 SAMPLE STORE CSR CSD SLOT 19 "CHO"
210	#define ADC 0 SAMPLE STORE CSR CSD SLOT 2 "CHO"
211	#define ADC 0 SAMPLE STORE CSR CSD SLOT 20 "CHO"
212	#define ADC 0 SAMPLE STORE CSR CSD SLOT 21 "CHO"
213	#define ADC 0 SAMPLE STORE CSR CSD SLOT 22 "CHO"
214	#define ADC 0 SAMPLE STORE CSR CSD SLOT 23 "CHO"
215	#define ADC 0 SAMPLE STORE CSR CSD SLOT 24 "CHO"
216	#define ADC 0 SAMPLE STORE CSR CSD SLOT 25 "CHO"

Since we are using the small_C_library for space reasons, the standard C io calls cannot be used. Instead, we will be using the Nios II HAL API to access the ADC, PIO, and standard output via the

JTAG UART. The other header files are under the drivers\inc folder altera_avalon_adc_*.h. Each file contains the function prototypes of the commands that will be used in the application.

Before we move on to writing the application, we need to fix bugs that are in the generation of the BSP. Intel has done a great job of taking the heavy HDL coding out of the design, but they forgot a few things.

12. In the adcLEDLevels _bsp project, expand Drivers\inc, and open the altera_modular_adc.h file. At about line 92 you will see the following:

#define ALTERA_MODULAR_ADC	INSTANCE (name,	dev)	1
static alt_modular_adc_dev	dev = \		
{	١		
{	١		
ALT_LLIST_ENTRY,	١		
name##_NAME,	١		
NULL,	\		
NULL,	١		
NULL,	١		
NULL,	١		
NULL,	\		
NULL,	١		
NULL,	١		
},	١		
NULL,	/		
NULL,	١		
0,	١		

Copyright © 2022 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks"

Ο,	λ.
name##_DUAL_ADC_MODE	N
}	
/*	
* The macro ALTERA_MODULAR_ADC_IN function	NIT is called by the auto-generated
<pre>* alt_sys_init() to initialize a</pre>	given device instance.
*/	
#define ALTERA_MODULAR_ADC_INIT(na	ame, dev) \
<pre>altera_modular_adc_init(&dev, name## IRO);</pre>	<pre>name##_IRQ_INTERRUPT_CONTROLLER_ID,</pre>

Rev 1.4

This autogenerated file is not correct. The variable names are not set up correctly. For example, name##_NAME should actually be name##_SEQUENCER_CSR_NAME. This matches the system.h defines. Name## resolves to adc_0; the name we gave the ADC in Platform Designer.

13. Change the code to the following:

#define ALTERA_MODULAR_ADC_INSTANCE (#	name, dev) \
static alt_modular_adc_dev_dev =	\
{	
{	Ν
ALT_LLIST_ENTRY,	1
name##_SEQUENCER_CSR_NAME,	λ.
NULL,	\
NULL,	\
NULL,	\
NULL,	Λ
},	Λ
NULL,	Λ
NULL,	Λ
0,	Λ
0,	Λ
name##_SEQUENCER_CSR_DUAL_ADC_MOD	E \
}	
/*	
* The macro ALTERA_MODULAR_ADC_INIT	is called by the auto-generated

```
* alt sys init() to initialize a given device instance.
```

```
*/
```

```
name##_SAMPLE_STORE_CSR_IRQ);
```

14. Save and close the file.

Note: Any time you have to update the adcLEDLevels_bsp project by generating a new BSP because of a hardware design change, you also have to fix this file again.

```
All other copyrighted, registered, and trademarked material remains the property of the respective owners.
```

- 15. We need to add a main.c file to the project. Right-click on the adcLEDLevels project, and select New->File from the context menu.
- 16. Enter the file name main.c and click Finish.
- 17. Add the following code to the main.c file.

```
1.
       #include "sys/alt stdio.h"
2.
       #include "system.h"
       #include "priv/alt busy sleep.h"
3.
4.
       #include "sys/alt sys wrappers.h"
       #include "altera modular adc.h"
5.
       #include "altera modular adc sequencer regs.h"
6.
       #include "altera modular adc sample store regs.h"
7.
8.
       #include "altera avalon pio regs.h"
9.
10.
11.
       int main()
12.
       {
13.
         alt putstr ("ADC and LED test!\n");
14.
15.
         alt u32 adc slot data[64]; //There are 64 slots available
16.
         alt u32 slot value data;
17.
         int x = 0;
18.
         //Set all the slots to be zero
19.
         for(x = 0; x < 64; x++) {
20.
               adc slot data[x]=0;
21.
22.
23.
         adc stop(ADC 0 SEQUENCER CSR BASE);
24.
         adc set mode run once (ADC 0 SEQUENCER CSR BASE);
25.
         adc interrupt disable (ADC 0 SAMPLE STORE CSR BASE);
26.
27.
         adc start (ADC 0 SEQUENCER CSR BASE);
28.
29.
         alt adc word read(ADC 0 SAMPLE STORE CSR BASE, adc slot data,
       ADC 0 SAMPLE STORE CSR CSD LENGTH); //fill in all the slots
30.
         slot value data = adc slot data[0]; //CH7 is set for slot 1
       (the values are off set by 1, thus 0 for the array).
31.
         alt printf("ADC Value (HEX) from wrapper: %x\n",
       slot value data);
32.
33.
         IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, 0x1F);
34.
35.
         //LEDs act like a level each one turns on the higher the
       voltage.
36.
         //Since the LEDs are active low, the 0s turn them on. Saves on
       having to add NOT gates for each line in the design.
37.
         if (slot value data > 700) {
38.
              IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, 0x1E);
39.
40.
         if(slot value data > 1500) {
41.
              IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, 0x1C);
42.
         }
43.
         if (slot value data > 2300) {
44.
              IOWR ALTERA AVALON PIO DATA(PIO 0 BASE, 0x18);
45.
```

Copyright © 2022 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks

46.	if (slot_value_data > 3000){
47.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x10);
48.	}
49.	if (slot_value_data > 3600){
50.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x0);
51.	}
52.	
53.	return 0;
54.	}

The basic concept for programming on top of the provided HAL drivers is through the use of the HAL API Wrappers. The various driver header files contain the wrapper APIs that are used to access the ADC and PIO.

Lines 15-19 set up the slot buffer. There are 64 possible slots available, but only slot 1 is being used for CH7. For completeness, the buffer has room for all 64.

Lines 23-25 configure the ADC for single-reading. The sequencer is stopped, the sequencer mode is set to run once, and interrupts are disabled.

Once the ADC has been set up, Line 27 starts the sequencer to take one reading. The slot buffer is filled with the results and the CH7/Slot1 result is then sent to the standard I/O. The value is never converted to an actual voltage. The values can range from 0 to 4095 (0xfff). The data results are then used to turn on the corresponding LEDs. The tolerance of the resistor pots can yield different results so you can adjust the values and the LEDs that get turned on accordingly.

- 18. Save the file.
- 19. Right-click on adcLEDLevels project again, and select Build Project. The build should complete successfully, and the adcLEDLevels.elf file should have been created.

20. Close Eclipse

Now, we are ready to program the board with the design and debug the application.

1.1.4 Program the Board

With the design compiled, application ready, and circuit connected, we can now test the design on the board.

1. Connect the board and the programming cable per the cable instructions.

Note: The MAX 10 – 10M08 Evaluation Kit doesn't come with a programming cable or built-in JTAG USB Blaster II. You will have to use either the USB Blaster II or EthernetBlaster II external cables. The EthernetBlaster II was used for this example. DHCP setup was not working so a direct Ethernet cable connection was made between a PC and the EthernetBlaster II. Set the static IP for the PC network card to 198.162.0.1. Access the EthernetBlaster II via a browser and then change the IP to a static IP that matches the network. The new IP address was used as the Server name. Your experience might be different.

- 2. Power on the board and the programming cable box.
- 3. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the icon on the toolbar.

- 4. The Programmer dialog appears. Click on the "Hardware Setup" button.
- 5. Click the Add hardware button. Select the Hardware type and fill in any remaining information and click OK.

ardware Settings	JTAG S	ettings		
lect a programmin	g hardwa	re setup to use wh	en programming	devices. This programming
rdware setup appli	es only to	the current progr	ammer window.	
irrently selected ha	rdware:	No Hardware		
rduara froquancy:				
👋 Add Hardwar	e		×	
Hardware type:	Ethern	etBlaster	•	Add Hardware
Port:			Ŧ	Remove Hardwar
Baud rate:			v	
Server name:			Ŧ	
Server port:	1309			
Server password				

6. The tool allows you to connect to a number of programming cables. We need to select the one for our board. In the "Currently selected hardware", click the drop-down and select the hardware cable for the board, and click Close when finished

lardware Settings JTAG S	ettings				
elect a programming hardwa ardware setup applies only to	re setup to use when o the current program	n programming devic nmer window.	es. This programming		
urrently selected hardware:	EthernetBlasterII o	n 192.168.1.198 [Eth	ernetBlasterII] 🔹		
lardware frequency:			Hz		
vailable hardware items					
Hardware	Server	Server Port Add Hardwar			
EthernetBlasterII	192.168.1	192.168.1 EthernetBl	Remove Hardware		

7. A NIOS2adc_time_limited.sof file gets created during the Compile Design flow. The file is automatically filled in. There is only one FPGA on the board and in the JTAG chain, so the file already has the Program/Configure checkbox checked. Click the Start button to program the board. The process takes a few seconds and shows that the task completed successfully.

Note: The reason for the "time_limited" in the name of the .sof file is that we chose an Nios II/f, which requires a license. The design must be connected to the JTAG cable or the system will shut off after an hour.

Hardware Setup	I on 192.168.1.198 [Ethe	ernetBlasterII]	Mode: JTAG		• P	rogress:			
Enable real-time ISP to allow background programming when available									
▶ [™] Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Securit Bit
Stop	output_files/NIOS2adc	10M08SAE144	002F3207	002F3207	✓				
Auto Detect									
¥ Delete									
Pro Delete									
Add File									
Change File									
Save File									
		.							
Add Device	TDI								
Add Device									
Add Device									
Add Device		44							
Add Device ↑ [™] Up ↓ [™] Down		44							

A dialog will appear that states that the design is time-limited to one hour. The design can always be reloaded when the timeout occurs.

Important: This dialog acts as a tether to the time-limited IP. You must leave this dialog running while you are running applications.

1.1.5 Deploy the Application in Eclipse

With the design loaded and the connection to JTAG up and running, we can test the application.

- 1. From the Quartus menu, select Tools-> Nios II Software Build Tools for Eclipse.
- 2. Open the main.c application.
- 3. Toggle a breakpoint at line 25, when the ADC interrupt is disabled.
- 4. Right-click on adcLEDLevels and select Debug As->Nios II Hardware.
- 5. The program will load and start running.
- 6. Click F8 or the resume button to jump to the breakpoint.
- 7. Step through the program to start the ADC sequencer and read the data into the slot buffers. In the watch list, the slot buffer will only have one value in the first slot. Continue to step through the program and LEDs are turned on based on the value.

💽 mai	inc 23 c		
тJ	att_ups aut_sidt_uata(01), //inete ate of sidts available		
16	alt_u32 slot_value_data;		
17	int x = 0;		
18	//Set all the slots to be zero		
19	for (x = 0; x < 64; x++) {		
20	<pre>adc_slot_data[x]=0;</pre>		
21	}		
22			
23	adc stop(ADC 0 SEQUENCER CSR BASE);		
24	adc set mode run once(ADC 0 SEQUENCER CSR BASE);		
x 25	adc interrupt disable(ADC 0 SAMPLE STORE CSR BASE);		
26			
27	adc start(ADC 0 SEQUENCER CSR BASE);		
28			
29	alt adc word read(ADC 0 SAMPLE STORE CSR BASE, adc slot data, ADC 0 SAMPLE STORE CSR CSD LENGTH); //fill in all the slots		
30	slot value data = adc slot data[0]; //CH7 is set for slot 1 (the values are off set by 1, thus 0 for the array).		
31	alt printf("ADC Value (HEX) from wrapper: %x\n", slot value data);		
32			
33	IOWR ALTERA AVALON PIO DATA(PIO 0 BASE,0x1F);		
34			
35	//LEDs act like a level each one turns on the higher the voltage.		
36	//Since the LEDs are active low, the Os turn them on. Saves on having to add NOT gates for each line in the design.		
\$ 37	if(slot value data > 700){		
38	IOWR ALTERA AVALON PIO_DATA(PIO_O_BASE,0x1E);		
39	}		
40	if(slot_value_data > 1500){		
41	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1C);		
10			
	· · · · · · · · · · · · · · · · · · ·		
📮 Cor	isole 🧔 Tasks 📸 Nios II Console 🕄 🚟 Disassembly		
adcLedLevels2Nios II Hardware configuration - cable: EthernetBlasterII on 192.168.1.198 [EthernetBlasterII] device ID: 1 instance ID: 0 name: jtag_uart_0.jtag			
ADC and LED test!			
ADC Value (HEX) from wrapper: 65b			

8. When finished close Eclipse, the OpenCore Plus dialog, and the JTAG programming application.

Warning: The tools make it easy to download and run applications, however, multiple application download attempts can cause the tools to crash with a java runtime pop-up error.

1.1.6 Eclipse Application 2: adcLEDLevels_Interrupt Continuous Read

The ADC in this application will be set to run continuously. An interrupt will be set to signal when data is in the buffer ready to be read. There will be a while-loop that waits for the interrupt, reads the data, and turns on the LEDs like the first application.

- 1. We can take advantage of the already create adcLEDLevels_bsp to create this new application. From the menu in Eclipse, select File->New->Nios II Application.
- 2. The dialog that appears asks for the name and the BSP project in the workspace.
- 3. Click on the 3 dots button, select the adcLEDLevels_bsp project, and click OK.

	Nios II App Nios II Appl Project nar	lication ication ne is empty		-		×
	Project name BSP location:]
p: n M.	Use defau Location Additional a Command:	Project Selection Select a BSP project			×	(*)
	?	?	OK	Cance	el	21

4. Enter the project name adcLEDLevels_Interrupt.

⊜ Nios II Appli	cation	17 <u>—</u> 1		×	
Nios II Appli	Nios II Application				
Create a new N	lios II Software Build Tools application project	d			
Project name:	adcLEDLevels_Interrupt				
BSP location:	E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit\	NIOS2_ADC\sof	tware\add		
			Cre	ate	
Use default location					
Location:	E:\FPGA\Intel_Max_10_FPGA_Evaluation_Kit	\NIOS2_ADC\so	oftware\a		
Additional arg	uments:				
				Ċ.	
Command:					
nios2-app-ge	nerate-makefile.exeapp-dirbsp-dir/ac	lcLEDLevels_bsp	oelf-	÷	
☑ Use relative	path				
?		Finish	Cance	el	

- Click Finish.
 Right-click on adcLEDLevels_Interrupt and select New-> File from the context menu.
- 7. Enter the name main.c and click Finish.
- 8. In the main.c file, enter the following:

1.	<pre>#include "sys/alt_stdio.h"</pre>
2.	#include "system.h"
3.	#include "priv/alt_busy_sleep.h"
4.	<pre>#include "sys/alt_sys_wrappers.h"</pre>
5.	<pre>#include "altera_modular_adc.h"</pre>
6.	<pre>#include "altera_modular_adc_sequencer_regs.h"</pre>
7.	<pre>#include "altera_modular_adc_sample_store_regs.h"</pre>
8.	<pre>#include "altera_avalon_pio_regs.h"</pre>
9.	
10.	
11.	<pre>void adc0_handler (void *context)</pre>
12.	{
13.	<pre>adc_interrupt_disable(ADC_0_SAMPLE_STORE_CSR_BASE);</pre>
14.	
15.	}
16.	
17.	
18.	int main()
19.	{
20.	alt_putstr("ADC and LED test!\n");
21.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1F);
22.	
23.	
24.	alt_u32 adc_slot_data[64]; //There are 64 slots available

Copyright © 2022 Annabooks, LLC. All rights reserved Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks

25.	alt_u32 slot_value_data;
26.	int x = 0;
27.	//Set all the slots to be zero
28.	for (x = 0; x < 64; x++) {
29.	<pre>adc_slot_data[x]=0;</pre>
30.	}
31.	
32.	<pre>alt_modular_adc_dev adc0_dev, *p_adc0;</pre>
33.	<pre>p_adc0 = &adc0_dev;</pre>
34.	
35.	<pre>adc_stop(ADC_0_SEQUENCER_CSR_BASE);</pre>
36.	<pre>p_adc0 = altera_modular_adc_open(ADC_0_SEQUENCER_CSR_NAME);</pre>
37.	<pre>alt_adc_register_callback (p_adc0, adc0_handler, NULL, ADC_0_SAMPLE_STORE_CSR_BASE);</pre>
38.	<pre>adc_set_mode_run_continuously(ADC_0_SEQUENCER_CSR_BASE);</pre>
39.	<pre>adc_clear_interrupt_status(ADC_0_SAMPLE_STORE_CSR_BASE);</pre>
40.	<pre>adc_interrupt_enable(ADC_0_SAMPLE_STORE_CSR_BASE);</pre>
41.	<pre>adc_start(ADC_0_SEQUENCER_CSR_BASE);</pre>
42.	
43.	
44.	while(1){
45.	
46.	adc_wait_for_interrupt(ADC_0_SAMPLE_STORE_CSR_BASE);
47.	alt_adc_word_read(ADC_0_SAMPLE_STORE_CSR_BASE, adc_slot_data,
4.0	ADC_0_SAMPLE_STORE_CSR_CSD_LENGTH); //fill in all the slots
48.	slot_value_data = adc_slot_data[0]; //CH/ is set for slot 1
4.0	(the values are off set by 1, thus 0 for the array).
49.	alt_printf("ADC Value (HEX) from wrapper: *x\n",
5.0	slot_value_data);
50.	
51.	IOWR_ALITERA_AVALON_PIO_DATA(PIO_0_BASE, 0XIF);
52.	(/IEDs set like a level each one turns on the higher the
JJ.	voltage.
54.	//Since the LEDs are active low, the 0s turn them on. Saves on
	having to add NOT gates for each line in the design.
55.	<pre>if(slot value data > 700) {</pre>
56.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1E);
57.	}
58.	if (slot_value_data > 1500){
59.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x1C);
60.	}
61.	if (slot_value_data > 2300) {
62.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x18);
63.	}
64.	if (slot_value_data > 3000){
65.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x10);
66.	}
67.	<pre>if(slot_value_data > 3600) {</pre>
68.	IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE,0x0);
69.	}
70.	
/1.	alt_busy_sleep(10000);
/2.	}
13.	
/4.	return U;
15.	

For a continuously running ADC sequencer, an interrupt handler is needed to stop interrupts so the slot buffers can be read. Lines 11-15 define the handler. The handler simply disables the interrupts. Lines 24-30 set up the slot buffer as the first application. Lines 32-41 set up an instance of the

Copyright © 2022 Annabooks, LLC. All rights reserved Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Annabooks"

alt_modular_adc_dev structure and a pointer based on the structure. The pointer is set to point to the address of the instance. The pointer is then used to open the adc0 based on the sequencer name. The handler is then registered as the callback of the adc0 instance. The sequencer is then set to run continuously, the interrupt status is cleared and the interrupt is then enabled. The sequencer is then started.

The while-loop contains the main running application. The program will wait for the adc0 interrupt status register (ISR) to be set to 1. With the handler stopping the interrupts, the ISR can be set and the read of the buffer can take place. If the interrupt is not stopped, the wait will go on forever. Once the buffer has been read, the interrupt is then turned back on by the driver. The program then writes out the value to the standard output and turns on the LEDs accordingly. The program will continue to loop.

- 9. Save the file.
- 10. Build the application.
- 11. Set a breakpoint at line 41, starting the sequencer.
- 12. Make sure that you have deployed the design to the FPGA and the OpenCore Status dialog is running.
- 13. Right-click on adcLEDLevels_Interrupt and select Debug As->Nios II Hardware.
- 14. The program will load and start running.
- 15. Click F8 or the resume button to jump to the breakpoint.
- 16. Step through the program to start the ADC sequencer. As you step through the while-loop and get to the wait-on-interrupt, you will notice a slight pause in the processing before you can continue stepping through the code. If you want to set a breakpoint in the adc0_handler, you can see when the handler has been triggered. The program runs like the first program but in a continuous loop to repeatedly read the data from the ADC, stopping the interrupt each time to get and display the data.
- 17. Hit F8 and the application will continue to run at full speed and you can adjust the trimmer pot and watch the LEDs turn on and off like a bar graph as the voltage level changes.
- 18. When finished, close Eclipse, the OpenCore Plus dialog, and JTAG programming application.

1.2 Summary: Limited Documentation and Examples

The documentation on the API wrappers for the ADC is limited to the source code. Any clue on how to use the API in an application is left up to guesswork, experience, and searching the Intel community platforms for answers. Internet searches resulted in several half-baked examples based on older versions of Nios II HAL code. For someone new to this development, these examples can be confusing and misleading. Some examples confused the sequencer and sample store defines when calling the APIs, which is a mistake that can crash the application. Hopefully, the walk-through of this design and the two types of ADC applications will help you with your project.

1.3 References

The following reference were used for this article:

- Intel® MAX® 10 Analog to Digital Converter User Guide - <u>https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-</u> <u>digital-converter-overview.html</u>
- Introduction to Analog to Digital Conversion in Intel® MAX® 10 Devices Parts 1 and 2 -Intel FPGA training site Intel® FPGA Technical Training
- Using the ADC Toolkit in Intel® MAX® 10 Devices Intel FPGA training site Intel® FPGA
 Technical Training

Copyright © 2022 Annabooks, LLC. All rights reserved

Intel, Quartus, Nios II, and MAX 10 are registered trademarks of Intel Corporation

- How to Create ADC Design in MAX 10 Device Using Qsys Tool - <u>https://cdrdv2.intel.com/v1/dl/getContent/649255?explicitVersion=true</u> / <u>https://www.youtube.com/watch?v=0oO1RFa-4Xk</u>
- Intel® MAX® 10-10M08 Evaluation Kit schematic file. Altera_10M08S_E144_eval_schematic_REV_1_0.pdf.

The following are a few Nios II ADC applications reference found with an Internet search:

- <u>http://leliuria.blog.jp/archives/49026265.html</u>
- <u>https://community.intel.com/t5/FPGA-Intellectual-Property/Modular-ADC-MAX10/td-p/182084</u>
- <u>https://faculty-</u> web.msoe.edu/johnsontimoj/EE3921/files3921/max10_adc_nios_example.pdf