Implementing the ADC on Intel® MAX® 10-10M08 Evaluation Kit

By Sean D. Liming and John R. Malin Annabooks, LLC. – <u>www.annabooks.com</u>

October 2022

This hands-on article will create a simple design for the ADC controller that is built into the MAX 10 FPGAs. The Max 10 is used in conjunction with the higher-end Intel FPGA to provide the ADC support that these higher-end FPGAs don't support. The MAX 10 -10M08 Evaluation Kit developed by Terasic, Inc, is a very simple development board to help make it easy to get started developing with the Quartus Prime software.

The Project Requirements:

- Intel Quartus Prime Lite Edition V21.0 7zip is required to extract the tar file.
- Intel® MAX® 10 10M08 Evaluation Kit the evaluation kit and the schematic for the evaluation board are required. The schematic PDF file can be downloaded from the Intel FPGA website.
 - $\circ~$ Optional: a populated 10K_ Ω Trimmer pot for R94 on the schematic, part number 3362P-1-103TLF.
- Intel FPGA Programming cable USB Blaster II or EthernetBlaster II. Unlike other FPGA boards, the MAX 10 -10M08 Evaluation Kit doesn't have a built-in USB Blaster solution; so a separate programming cable is required.
- A signal or function generator some kind an AC signal generator, i.e., BK Precision 4012A or equivalent is required.

Note: There are equivalent MAX 10 development and evaluation boards available. These boards can also be used as the target, but you will have to adjust to the available features on the board. Please make sure that you have the board's schematic files as these will be needed to identify pins.

1.1 Download and Install the Quartus Prime Lite Edition Software

The Quartus can run on Windows and different Linux distributions. The installation of the software has many steps. Please see the article <u>Intel® Quartus® Prime Lite and NIOS® II SBT for Eclipse</u> <u>Installation Instructions</u> on Annabooks.com to install the software needed for this hands-on exercise. All you need for this hands-on paper is the installation of the Quartus Prime Lite software with Max 10 support.

1.2 ADC Project

There are several parts in the MAX 10 family. The lower end of the family has 1 ADC block built in, and the upper end of the family has 2 ADC blocks.

The 10M08SAE144C8G that is on the evaluation kit board contains only 1 ADC block. To help create a design with the ADC, there is an ADC IP block that comes with the Quartus Prime software that can be used to create a design with the ADC. This IP block allows developers to quickly create a design without having to start from scratch. 10M08SAE144C8G's onboard 12-bit ADC has 8 input channels (CH1-CH8), a dedicated input channel 0 (ANIAN1), and a temperature sensing diode (TSD) channel as input. The 7 input channels are multiplexed with GPIOs. When the ADC is in the design, the ADC/GPIO multiplexed pins can only be used for ADC. A compilation error will occur if you try to make an assignment. The built-in temperature sensing diode (TSD) can measure the internal temperature of the MAX 10. The ADC is clocked using a phase-locked loop (PLL) The MAX 10 has 4 PLLs built in. IP blocks are used to implement the ADC and PLL into the design. For this hands-on example, we will create a design that uses two channels. The first is channel 1 which is

attached to a DC or AC source and the second is channel 7 which is connected to the R94 10KΩ trimmer pot. The ADC Toolkit that comes with Quartus Prime will read the output from the ADC.

1.2.1 Create the Project

The first step is to create the design project.

- 1. Open Quartus.
- 2. Click on the New Project Wizard.

		*	New Project Wizard	2	Open Proje	ect		
	Compare Editions	Buy Software	Documentation	Training	Support	What's New	Notifications	
Tutorial Video: <u>286 Transceiv</u> Tutorial Video: <u>Hyperflex Arch</u>								
Tutorial Video: <u>PCleGen2_DM</u>								
Close page after project l Don't show this screen a	oad gain							(inte

- 3. Click Next to the Introduction dialog.
- 4. Select or create a project directory c:\FPGA\ADC_Example (Do not use the Quartus installation directory) and name the project "ADC0_Example". Click Next.

Note: By default, the root directory is the Quartus installation directory. Make sure the root project directory is a separate path from the Quartus installation files.

- 5. Project Type: Empty project, click Next.
- 6. Add File, no files to add, click Next.
- 7. Family, Device & Board Settings, click the Board tab and select: MAX 10 FPGA 10M08 Evaluation Kit and click Next.

New F	Project Wizard					
mi	y, Device & Board Settings					
	- Roard					
evic	e board					
elec	t the board/development kit you want to targe	et for compila	ition.			
amil	y: MAX 10	*	Development Kit:	Any		*
vaila	ble boards:					
	Name	Versi	ion Fami	ly Device	Vendor	
	Arrow MAX 10 DECA	0.9	MAX 10	10M50DAF484C6GES	Arrow	4976
	BeMicro MAX 10 FPGA Evaluation Kit	1.0	MAX 10	10M08DAF484C8GES	Arrow	8064
	MAX 10 DE10 - Lite	1.0	MAX 10	10M50DAF484C6GES	Altera	4976
	MAX 10 FPGA 10M08 Evaluation Kit	1.0	MAX 10	10M08SAE144C8GES	Altera	8064
	MAX 10 FPGA Development Kit	1.0	MAX 10	10M50DAF256C7G	Altera	4976
	MAX 10 NEEK	1.0	MAX 10	10M50DAF484I7G	Terasic	4976
	Odyssey MAX 10 FPGA Kit	1.0	MAX 10	10M08SAU169C8GES	Macnica	8064
10	rate ten laval design file					
	cate top tever design ne.					
an't	find your board? Check the <u>Design Store</u> for a	additions and	search for baseline	under Design Examples.		
Helr				< Back Next >	Finish	Cancel

- 8. EDA Tools, click Next.
- 9. Summary, click Finish.

Note: The actual MAX 10 on our board is the 10M08SAE144C8G, thus it is not an Engineering Sample (ES). The next two steps change the device to the production device. Your experience might be different. These next two optional steps change the device.

- 10. In the project navigation pane on the left, right-click on 10: 10M08SAE144C8GE, and select Device from the context menu.
- 11. In the Available devices, scroll down and select the 10M08SAE144C8G, click OK.

Device Board							
Select the family and You can install additio To determine the vers	device you want to t onal device support v ion of the Quartus P	arget for o with the Ir Prime soft	compilation. nstall Devices co ware in which yo	mmand on th our target dev	ie Tools m ice is supp	enu. orted, r	refer to the <u>Device Support List</u> webpag
Device family				Show in 'A	vailable de	vices' li	st
Eamily: MAX 10 (I	DA/DF/DC/SA/SC/SI	L)	*	Pac <u>k</u> age		Any	÷
Dev <u>i</u> ce: All	e: All			Pin <u>c</u> our	it:	Any	*
Target device	arget device			Core sp <u>e</u>	ed grade:	Any	•
 <u>A</u>uto device sel <u>S</u>pecific device 	ected by the Fitter selected in 'Available	e devices'	list	Name fil ✓ S <u>h</u> ov	ter: v advancec	device	25
Other: n/a				Device and	d Pin Optic	ons	
A <u>v</u> ailable <mark>d</mark> evices:							
Name	Core Voltage	LEs	Total I/Os	GPIOs	Memor	y Bits	Embedded multiplier 9-bit elem
10M08SAE144C8G	3.3V	8064	101	101	387072		48
10M08SAE144C8GE	S 3.3V	8064	101	101	387072		48
10M08SAE144I7G	3.3V	8064	101	101	387072		48
	3 31/	8064	101	101	387072		48
10M0854F144I7P							

1.2.2 Create the Design Step 1: Platform Builder

Quartus supports many design types to create an FPGA design. The Platform Designer tool will be used for this hands-on exercise. Platform Builder makes it easy to add already-built IP blocks and interconnect them.

1. From the menu, select Tools->Platform Designer, or the Platform Designer icon from the toolbar.

ir

٩G	Evaluat	tion Kit/ADC/ADC - ADC		
ng	<u>T</u> ools	<u>W</u> indow <u>H</u> elp		
	Ru	un Sim <u>u</u> lation Tool	۲	
	🗞 La	aunch Simulation Library <u>C</u> ompiler		Ś
	🍇 La	aunch Design Space E <u>x</u> plorer II		
	S Ii	ming Analyzer		
	A	dvisors	•	
	🚸 c <u>i</u>	<u>h</u> ip Planner		
	🍄 <u>D</u> e	esign Partition Planner		
	Ne	etlist <u>V</u> iewers	•	
	🟸 Si	gnal Tap Logic A <u>n</u> alyzer		
	न In	-System Memory Content Editor		
	🔤 Lo	ogic Analyzer Interface Edito <u>r</u>		
	01 In	-System Sources and Probes Editor		
	<u>S</u> i	gnal Probe Pins		
	🌺 <u>P</u> r	rogrammer		
	די 🦈	FAG Chain Debugger		
	👋 Fa	ault Injection Debugger		
	Sy	yst <u>e</u> m Debugging Tools	•	
	불 IP	Catalog		
	Ni	ios II So <u>f</u> tware Build Tools for Eclipse		
	🚠 Pl	atform <u>D</u> esigner		
	🥖 То	cl Scr <u>i</u> pts		
	Ci	ustomi <u>z</u> e		

The Platform Designer tool is launched. By default, a clock (clk_0) is added to the design. Platform Designer tool makes it easy to add IP blocks and make interconnections between the blocks.

2. The top, left pane contains the IP Catalog with all the available IP blocks that come with Quartus Prime. In the search box, type ADC.

Platform Designer - unsaved.qsys* (E:\FPGA\Intel Max 10 FPGA Evaluation)

File Edit System Generate View Tools Help

📂 IP Catalog 🛛 🕄		- d 🗆
🔍 adc		× 🕸
Project Wew Component Library Processors and Peri Peripherals Modula Modula Modula Generic IO ADC Co	nt ipherals r ADC core Intel FPGA IP r Dual ADC core Intel FPGA I ontroller for DE-series Boards	P 5
New Edit		➡ Add

3. Expanding the branches reveals the available IP. Double-click on Modular ADC core Intel FPGA IP. This will add the ADC IP to the design and open the Modular ADC core Intel FPGA IP configuration page.

Modular ADC core Intel FPGA IP - modular_adc_0	x
Modular ADC core Intel FPGA IP	
MegaGere, altera_modular_adc	Documentation
🕆 Block Diagram	General
Show signals	▼ Core Configuration
	Core Variant: Standard sequencer with Avalon-MM sample storage
modular_adc_0	Debug Path: Disabled v
clock interrupt sample_store_irc	* Clocks
reset_sinkreset	ADC Sample Rate: 1 Mhz ~
adc_pll_clock clock	ADC Input Clock: 10 Mhz 🗸
adc_pl_locked conduit	* Reference Voltage
sequencer_csr avalon	Reference Voltage Source: External ~
sample_store_csr avalon	External Reference Voltage: 2.5 v
altera_modular_ado	* Logic Simulation
	Enable user created expected output file: Disabled V
	Channels Sequencer
	CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 TSD
	Channel 0
	Use Channel 0 (Dedicated analog input pin - ANAIN)
Fror: modular adc. 0: Sequencer Slot 1 is pointing to Channel which	is not available in current selected device part. Please re-configure Sequencer Slot 1.
Warning: modular_adc_0: Error converting csd slot value 30 to strin	ig output code.
	Cancel Finish

- 4. In the General tab, set the following:
 - a. Core Variant: Standard sequencer with Avalon-MM sample storage.
 - b. Debug Path: Enable.
 - c. ADC Sample Rate: 1 MHz.
 - d. ASC Input Clock: 10 MHz.
 - e. Reference Voltage Source: External.
 - f. Internal reference Voltage: 3.3V
 - g. Enable user created expected output file: Disabled.

The ADC IP block supports several implementation variants. The one chosen will use the MAX 10's internal RAM to save the data. Since the ADC Toolkit will be used to monitor the ADC output, the Debug Path is set to Enabled. The evaluation kit has a 2.5 V reference voltage for the ADC; but since the 10K trimmer pot can supply 3.3 V to the channel, we will use the internal 3.3V.

General	
Core Configuration	
Core Variant:	Standard sequencer with Avalon-MM sample storage \sim
Debug Path:	Enabled 🗸
▼ Clocks	
ADC Sample Rate:	1 Mhz 🗸
ADC Input Clock:	10 Mhz \sim
Reference Voltage	
Reference Voltage Source:	Internal 🗸
Internal Reference Voltage:	3.3 V V
Logic Simulation	
Enable user created expected output file:	Disabled \checkmark
Channels Sequencer	
CH0 CH1 CH2 CH3 CH4 CH5 CH6	5 CH7 CH8 TSD
Channel 0	
Use Channel 0 (Dedicated analog inp	put pin - ANAIN)

5. In the Channels tab, click on CH1, and check the "Use Channel 1" box.

Channels	Sequence	er						
CH0 CH	CH2	CH3 C	CH4 CH5	CH6	CH7	CH8	TSD	
▼ Chan	nel 1 e Channe	1						

- 6. Click on CH7, and check the "Use Channel 7" box.
- 7. Click on the Sequencer tab.
- 8. Set the number of slots used to 3.
- 9. Set Slot 1: to CH1 and Slot 2: to CH 7.

Channels Sequen	ter
Conversion Set	quence Length
Number of slot us	ed: 2 🗸
Conversion Se	quence Channels
Slot 1 :	CH 1 🗸 🗸
Slot 2 :	CH 7 🗸

- 10. Click Finish.
- 11. The ADC will be added to the design. In the System Contents, you will see the ADC has been added to the list of devices to be interconnected. Right-click on the name and rename the device to ADC0.

- 12. Now we need to add the PLL. In the IP Catalog, type pll in the search.
- 13. A number of different PLLs appear in the branches, but only a few are available. Doubleclick on the ALTPLL Intel FPGA IP to add to the design.

14. The PLL is added and the ALTPLL Intel FPGA IP configuration page appears. The configuration page has a workflow-like presentation. Tab 1 Parameter Settings contains the general settings for the PLL. For the "What is the frequency of the inclk0 input?" set the value to 50.000 MHz. The evaluation kit has a 50 MHz oscillator.

K MegaWizard Plug-In Manager [page 1 of 11]		? ×
ALTPLL		
Parameter Settings PLL Output Image: Settings Image: Settings Image: Settings Image: Settings		
General/Modes Inputs/Lock Bandwidth/SS Clock switchover		
Currently selected device fami	ily: MAX 10	Ŧ
ALIFE 1030043330101004	Match projec	t/default
inclk0 inclk0 frequency: 50.000 MHz Incked Able to implement the requested PLL		
Cik Ratio Ph (dg) DC (%)		
Which device speed grade will you be using?	iy 💌	
MAX 10 Use military temperature range devices only		
What is the frequency of the indk0 input? 50	.000	MHz 💌
Set up PLL in LVDS mode Data rate: No	ot Available 💌 🛛	Mbps
PLL Type		

- 15. Click Next.
- 16. Optional: Uncheck the box next to "Create an 'areset' input to asynchronously reset the PLL". This signal is not needed for this design, and this will remove one warning from the list. Leave Create 'locked' output checked.

🛪 MegaWizard Plug-In Manager [page 2 of 11]	?	\times
Parameter Settings Pll Output EDA		
General/Modes / Inputs/Lock / Bandwidth/SS / Clock switchover /		
ALTPLL 1656643596187884 incik0 incik0 frequency: 50.000 MHz Operation Mode: Normal CK Ratio Ph (dg) DC (%) ico 1/5 0.00 50.00 MAX 10 MAX 10 Able to implement the requested PLL Optional Inputs Create an 'pilena' input to selectively enable the PLL Create an 'pidena' input to selectively enable the PLL Create an 'pidena' input to selectively enable the phase/frequency detector Lock Output Create locked' output Enable self-reset on loss lock Advanced Parameters Using these parameters is recommended for advanced users only Create output file(s) using the 'Advanced' PLL parameters		

- 17. Click on 3. Output Clocks tab.
- 18. There are 5 output clock settings. All we need is clk c0. Under clk c0 click the radio button next to Enter output clock frequency.
- 19. Set the Requested Settings to 10.00 MHz. This is to match the input clock frequency of the ADC.

👋 MegaWizard Plug-In Manager [page 6 of 1		? ×
Parameter PLL 3 Output Settings Reconfiguration Clocks	4 EDA	
dkc0 $dkc1$ $dkc2$ $dkc3$	> dk c4 >	
ALTPLL1656643596187884 inclk0 Operation Mode: Normal Cik Ratio Ph (dg) DC (%) o 1/5 0.00 50.00 MAX	CO - Core/External Output Clock Able to implement the requested PLL Use this dock Clock Tap Settings	Actual Settings 10.00000 1 50.00 50.00

- 20. Click Finish.
- 21. The PLL is added to the design. Rename the PLL to PLLforADC0. As there are 4 PLLs in the MAX 10, a good name helps show what the PLL is connected to.

		sample_store_csr	Avalon Memory Mapped Slave	Double-click to export	[clock]	e^.
		sample_store_irq	Interrupt Sender	Double-click to export	[clock]	
\checkmark		PLLforADC0	ALTPLL Intel FPGA IP			
	$\diamond \rightarrow \rightarrow$	inclk_interface	Clock Input	Double-click to export	unconnected	
		inclk_interface_reset	Reset Input	Double-click to export	[inclk_interf	
		pll_slave	Avalon Memory Mapped Slave	Double-click to export	[inclk_interf	e e
		c0	Clock Output	Double-click to export	PLL for ADC0	
		areset_conduit	Conduit	Double-click to export		
		locked_conduit	Conduit	Double-click to export		

22. Last item to add is the JTAG bridge so we can interact with the ADC output using the ADC Tool. In the IP catalog, type JTAG in the search.

👗 Platform Des	igner - unsaved.qsys* (E:\FPGA\Intel Max 10 FP	GA Evaluation Ki
File Edit System	Generate View Tools Help	
r IP Catalog	8	- 🗗 🗖
🔍 JTAG		× 🔯
Project	mponent	
Library	ons and Adaptors	
⊟Mem	 JTAG to Avalon Master Bridge 	
⊡Debu	on; Debug and Verification ug and Performance	
	Altera Virtual JTAG	
⊡ Interface Pro	otocols	
	JTAG UART Intel FPGA IP	
New Edit	t	🛉 Add

- 23. Double-click on the JTAG to Avalon Master Bridge to add it to the design.
- 24. A configuration page will appear. Click Finish.
- 25. Rename the JTAG to JTAGBridge.
- 26. Now we need to connect everything together. The first step is to connect clk_0 output to the 3 other devices. In the System Contents tab, click on the dots that connect clk_0 Clock Output to the clock inputs for all three devices. Don't connect the adc_pll_clock to this line.

12	System	Contents 🛛	Address Map 🛛	Interconnect	Requirements 🛛	
	X	😻 System:	unsaved Path: JT	AGBridge.clk		
+	Use	Connections	Name		Description	
1			⊡ clk_0		Clock Source	
×		Ŷ	—⊂– dk_in		Clock Input	
			—□- dk_in_re	eset	Reset Input	1
·			- clk		Clock Output	
			dk_rese	t	Reset Output	
	\checkmark		□ 🛄 ADC0		Modular ADC core I	ntel FPGA IP
•			→ clock		Clock Input	
E I		$ \diamond \diamond$	→ reset_si	nk	Reset Input	
			→ adc_pll_	clock	Clock Input	
			odc_pll_l	ocked	Conduit	
				er_csr	Avalon Memory Map	ped Slave
			→ sample_	store_csr	Avalon Memory Map	ped Slave
			sample_	store_irq	Interrupt Sender	
			PLLforAL)C0	ALTPLL Intel FPGA I	P
		•	→ inclk_int	erface	Clock Input	
			inclk_int	erface_reset	Reset Input	
			→ pll_slave		Avalon Memory Map	ped Slave
					Clock Output	
			areset_c	conduit	Conduit	
			locked_c	onduit	Conduit	
			回 咀 JTAGE	Bridge	JTAG to Avalon Mas	ter Bridge
			→ dk		Clock Input	
			→ dk_rese	t	Reset Input	
			master		Avalon Memory Map	oped Master
			master_	reset	Reset Output	

27. Now connect clk_0's clk_reset to the 3 devices' Reset Input pins.

1 23	System	Contents 🛛 🛛 🗛	lress Map 🛛 Interconnect	Requirements 🛛
	X	System: unsa	aved Path: JTAGBridge.clk_re	eset
+	Use	Connections	Name	Description
			⊡ clk_0	Clock Source
×			⊢ dk_in	Clock Input
		°—□	⊢ dk_in_reset	Reset Input
			< dk	Clock Output
			< dk_reset	Reset Output
	\checkmark		曰 🛄 ADC0	Modular ADC core Intel FPGA IP
•		• • • • • • • • • • • • • • • • • • • •	> clock	Clock Input
T		🛉 🕂 🔶 —	> reset_sink	Reset Input
		¢	adc_pll_clock	Clock Input
		○ −	adc_pll_locked	Conduit
		○	sequencer_csr	Avalon Memory Mapped Slave
			sample_store_csr	Avalon Memory Mapped Slave
			sample_store_irq	Interrupt Sender
			PLLforADC0	ALTPLL Intel FPGA IP
		+ + - -	inclk_interface	Clock Input
			indk_interface_reset	Reset Input
			pll_slave	Avalon Memory Mapped Slave
			< c0	Clock Output
			areset_conduit	Conduit
		ф. –	locked_conduit	Conduit
			回 咀 JTAGBridge	JTAG to Avalon Master Bridge
		• •	→ dk	Clock Input
			dk_reset	Reset Input
			master	Avalon Memory Mapped Master
			<pre>master_reset</pre>	Reset Output

28. Next, we connect the PLL output clock (c0) to the ADC PLL clock input (adc_pll_clock).

13	System	Contents 🛛 🛛 🛛 🛛 🕅 Addr	ess Map 🛛 Interconnect	Requirements 🛛	
	*	System: unsav	ved Path: ADC0.adc_pll_do	ck	
+	Use	Connections	Name	Description	
			🗆 clk_0	Clock Source	Γ
×		·	- dk_in	Clock Input	•
		° <u>−</u> ⊳-	- dk_in_reset	Reset Input	1
			clk	Clock Output	
			dk_reset	Reset Output	
	\checkmark		曰 咀 ADC0	Modular ADC core Intel FPGA IP	
•		$ \bullet \circ \rightarrow$	- clock	Clock Input	
_		$ \downarrow \downarrow \rightarrow$	reset_sink	Reset Input	
			adc_pll_clock	Clock Input	
			adc_pll_locked	Conduit	
		$ \rangle$	sequencer_csr	Avalon Memory Mapped Slave	
		$ \diamond + \rightarrow$	sample_store_csr	Avalon Memory Mapped Slave	
			sample_store_irq	Interrupt Sender	L
			PLLforADC0	ALTPLL Intel FPGA IP	
		♦ 	inclk_interface	Clock Input	
			inclk_interface_reset	Reset Input	
		$ \uparrow \rightarrow$	pll_slave	Avalon Memory Mapped Slave	
			c0	Clock Output	
			areset_conduit	Conduit	
			locked_conduit	Conduit	l
			· · · · · · · · · · · · · · · · · · ·	JTAG to Avalon Master Bridge	
			clk	Clock Input	
			clk_reset	Reset Input	
			master	Avalon Memory Mapped Master	
			master_reset	Reset Output	

29. Connect the PLL's locked_conduit to the ADC's asc_pll_locked pin.

[四]	System (Contents 🛛 Address	Map 🛛 Interconnect Red	quirements 🖾
	X	System: unsaved	Path: PLLforADC0.locked_c	onduit
+	Use	Connections	Name	Description
ц,			□ clk_0	Clock Source
\times		° −−-	dk_in	Clock Input
2			dk_in_reset	Reset Input
			dk	Clock Output
-			dk_reset	Reset Output
^	\checkmark		曰 喧	Modular ADC core Intel FPGA IP
•		$ \bullet \bullet \longrightarrow$	clock	Clock Input
T		$ \bullet \to \to$	reset_sink	Reset Input
		$ \phi \phi \rightarrow$	adc_pll_clock	Clock Input
		+	adc_pll_locked	Conduit
		$ \rangle \rightarrow \rightarrow$	sequencer_csr	Avalon Memory Mapped Slave
			sample_store_csr	Avalon Memory Mapped Slave
			sample_store_irq	Interrupt Sender
			PLLforADC0	ALTPLL Intel FPGA IP
		$ \bullet \bullet \to$	inclk_interface	Clock Input
		$ \bullet \circ \rightarrow$	inclk_interface_reset	Reset Input
		$ \diamond \rightarrow \rightarrow$	pll_slave	Avalon Memory Mapped Slave
			c0	Clock Output
			areset_conduit	Conduit
		· · · · · · · · · · · · · · · · · · ·	locked_conduit	Conduit
	\checkmark		드 멘 JTAGBridge	JTAG to Avalon Master Bridge
		$ \bullet \circ \rightarrow$	dk	Clock Input
		$ \bullet \uparrow \longrightarrow$	dk_reset	Reset Input
			master	Avalon Memory Mapped Master
			master_reset	Reset Output

30. We need the JTAG to be able to access the data. Connect the JTAGBridge's master to ADC0's sequence_csr and sample_store_csr.

	System	Contents 🛛	Address I	Map 🛛	Interconnect Re	quirements 🛛	
	X	😻 System	unsaved	Path: AD	C0.sample_store_	csr	
+	Use	Connections		Name		Description	
				⊟ clk_0		Clock Source	
X		Ŷ		dk_in		Clock Input	
		•		dk_in	_reset	Reset Input	1
				dk		Clock Output	
				dk_re	eset	Reset Output	
	\checkmark			回 🛄 🗚 🖸	C O	Modular ADC cor	e Intel FPGA IP
		♦	\longrightarrow	clock		Clock Input	
_		🛉 🕂 🔶	\longrightarrow	reset	sink	Reset Input	
		¢	\longrightarrow	adc_p	oll_clock	Clock Input	
			♦ ──┤	adc_p	oll_locked	Conduit	
		🛉	\rightarrow	seque	encer_csr	Avalon Memory I	Mapped Slave
			\rightarrow	samp	le_store_csr	Avalon Memory I	Mapped Slave
				samp	e_store_irq	Interrupt Sender	
				PLLfor	ADC0	ALTPLL Intel FPG	SA IP
		│ ┿╶┤╶┊╴┨ ╶┤	\rightarrow	inclk_	interface	Clock Input	
		🛉 🛔 🕆	\rightarrow	inclk_	interface_reset	Reset Input	
			\rightarrow	pll_sla	ave	Avalon Memory I	Mapped Slave
				c0		Clock Output	
			<u> </u>	arese	t_conduit	Conduit	
			•	locked	d_conduit	Conduit	
	\checkmark			⊡ 🛄 JTA	GBridge	JTAG to Avalon I	Master Bridge
		• • •	\longrightarrow	clk		Clock Input	
		• •	\longrightarrow	clk_re	eset	Reset Input	
		· · ·		maste	er	Avalon Memory I	Mapped Master
		l `		maste	er_reset	Reset Output	

There will be an error after these connections are made since ADC lines have the same address.

Messages		
Туре	Path	Message
- 	1 Error	
8	unsaved.JTAGBridge.master	ADC0.sample_store_csr (0x00x1ff) overlaps ADC0.sequencer_csr (0x00x7)
	3 Warnings	
<u> </u>	unsaved.PLLforADC0	PLLforADC0.areset_conduit must be exported, or connected to a matching conduit.
<u> </u>	unsaved.ADC0	Interrupt sender ADC0.sample_store_irq is not connected to an interrupt receiver
	unsaved.PLLforADC0	PLLforADC0.pll_slave must be connected to an Avalon-MM master
= ()	3 Info Messages	
	unsaved.ADC0.control_internal.response/st_splitter_internal.in	The sink has a empty signal of 1 bits, but the source does not. Avalon-ST Adapter will be inserted.
<		

31. To fix this error, change the sequencer_ser base address to 200. Click on the base value of 0x000_0000 and change the value to 0x0000_0200. The error will go away.

			•	adc_pll_locked	Conduit	Double-click to export				
		+	\rightarrow	sequencer_csr	Avalon Memory Mapped Slave	Double-click to export	[clock]		0x0000_0200	0x0000_0207
Г		+	\rightarrow	sample_store_csr	Avalon Memory Mapped Slave	Double-click to export	[clock]	÷.	0x0000_0000	0x0000_01ff
L				sample_store_irq	Interrupt Sender	Double-click to export	[clock]			

Copyright © 2022 Annabooks, LLC. All rights reserved Intel, Quartus, and MAX 10 are registered trademarks of Intel Corporation

All other copyrighted, registered, and trademarked material remains the property of the respective owners.

Rev 1.4

- 32. The design needs a base address to make the memory-mapped components unique. From the menu, select System->Assign Base Address.
- 33. We can now generate the HDL code. Click on the Generate HDL... button.
- 34. A Generation dialog appears. This will generate a block symbol file (.bsf) that we can use in the Block Diagram designer of Quartus. Keep the output Path the same as the project folder and click the Generate button.
- 35. A dialog will appear asking to save the system. Click save.
- 36. Name the system ADC0_1MHz.qsys and click save.
- 37. The save process should complete successfully. Click close.

1077		
	Save System Completed	\times
_	Al 🔀 🛆 🕕	
ns	Info: C:\intelfpga_lite\21.1\ip\altera\altera_components.ipx described 1966 plugins,	^
	Info: C:/intelfpga_lite/21.1/ip/**/* matched 106 files in 0.07 seconds	
m	Info: C:/intelfpga_lite/ip/**/* matched 0 files in 0.00 seconds	
je	Info: Reading index C:\intelfpga_lite\21.1\quartus\sopc_builder\builtin.ipx	
-li	Info: C:\intelfpga_lite\21.1\quartus\sopc_builder\builtin.ipx described 83 plugins, 0 p	i
	Info: C:/intelfpga_lite/21.1/quartus/sopc_builder/**/* matched 8 files in 0.01 seconds	
	Info: C:/intelfpga_lite/21.1/quartus/common/librarian/factories/**/* matched 0 fil	
	Info: C:/intelfpga_lite/21.1/quartus/sopc_builder/bin/\$IP_IPX_PATH matched 1 files	
	Info: C:\intelfpga_lite\21.1\quartus\sopc_builder\bin\root_components.ipx describ	:
	Info: C:/intelfpga_lite/21.1/quartus/sopc_builder/bin/root_components.ipx matched	~
	< >>	
	Save System: completed successfully.	
	Close	

38. The Generate HDL process will run and should finish successfully. There will be warnings for items not connected, but for this exercise, they will not be needed. Click Close.

	🗆	PLLtorADC0	ALTPLL Intel FPGA IP				
$+ \rightarrow$	•	indk interface	Clock Input	Dr	puble-click to e	woort	clk_0
+		Generate Completed				×	ndk_inte
	All	8 🛆 🕕					nclk_inte
	Ō	Info: timing_adapter_	1: "avalon_st_adapter" inst	antiated timing	_adapter "timi	ng_a ^	
-	0	Info: data_format_ad	apter_0: "avalon_st_adapt	er_001" instant	iated data_for	nat_i	
	0	Info: timing_adapter_	0: "avalon_st_adapter_001	" instantiated ti	ming_adapter	"timi	1.0
		Info: timing_adapter_	1: "avalon_st_adapter_001	" instantiated ti	ming_adapter	"timi	
		Info: error_adapter_0	: "avalon_st_adapter" instar	ntiated error_a	dapter "error_	adap	441
		Info: altera_trace_ade	c_monitor_wa_inst: "core" i	nstantiated alte	ra_trace_adc	mon	
		Info: altera_trace_ade	c_monitor_wa_inst: "altera	_trace_adc_n	nonitor_wa_ins	st" ins	
		Info: ADC0_1MHz: Don	e "ADC0_1MHz" with 44 modu	es, 68 files			
		Info: qsys-generate succ	eeded.			- 1	
		Info: Finished: Create H	DL design files for synthesi	5		~	
	<					>	
		Generate: completed with	warnings.				
					Stop	Close	

39. Click Finish to close the Platform Designer.

Ouar	tus Primo	_
Quar	tus Prime /	Ì
	You have created an IP Variation in the file E:/FPGA/Intel Max 10 FPGA Evaluation Kit/ADC/ADC.qsys.	
	To add this IP to your Quartus project, you must manually add the .qip and .sip files after generating the IP core.	
	The .qip will be located in <generation_directory>/synthesis/ADC.qip</generation_directory>	
	The .sip will be located in <generation_directory>/simulation/ADC.sip</generation_directory>	
	ОК)

- 40. Once the ADC0_1MHz design has been created, Quartus automatically reminds you to add the ADC0_1MHz IP to the ADC design project. Click Ok.
- 41. First, we need to add the newly create ADC block to the project. In the Project Navigator, click on the drop-down and select Files.
- 42. Right-Click on Files and select Add/Remote Files in Project.

Project Navigator 🗐 Files	- Q I Ø X
File-	n Project
and the second se	

- 43. A Settings-ADC page appears with Files on the left highlighted. Click the three dots browse button for File name, and navigate to ADC_Example\ADC0_1MHz\synthesis folder.
- 44. Click on ADC0_1Mhz.qip file and click open.

^	Name	Date modified
	submodules	6/30/2022 10:44 AM
	ADC0_1MHz.qip	6/30/2022 10:44 AM
	ADC0_1MHz.v	6/30/2022 10:43 AM

Settings - ADC0_Example				-	o x
Category: General	Files				Device/Board
Files Libraries IP Settings IP Catalog Search Locations Design Templates	Select the design files you want to include in th to the project. 	e project. Click Add All	to add all design files in th	ne pro	iject directory
 Operating Settings and Conditions Voltage 				×	Add A <u>l</u> l
Temperature	File Name ADC0 1MHz/synthesis/ADC0 1MHz.gip	Type IP Variation File (.gip)	Library Design Entry/Sy <none></none>	nth	<u>R</u> emove
Incremental Compilation					Up
Design Entry/Synthesis					Down
Simulation Board-Level Compiler Settings					<u>P</u> roperties

45. Click OK to close the Settings-ADC0_Example page. The qip file is added to the Project navigator list. Underneath are all the Verilog files that were generated by Platform Builder.

Annahooks

With the ADC qip file added to the project, let's create the block diagram and complete the design.

- 1. From the menu, select New->Block Diagram/Schematic File or the _____ icon from the toolbar. Click Ok.
- 2. The symbol window appears. Double-click on the symbol windows and the symbol dialog appears.
- 3. Click on the 3 dots to open the file browser.
- 4. Browse to \ADC_Example\ADC0_1MHz folder and open the ADC0_1MHz.bsf file.

synthesis 6/30/2022 10:44 AM	Name	^	Date modified
ADC0 1MU- 6-6 6/20/2022 10:42 AM	synthesis		6/30/2022 10:44 AM
ET ADCU_TIVIHZ.DST 0/30/2022 10:45 AIVI	ADC0_1MHz.bsf		6/30/2022 10:43 AM

- 5. The symbol for the ADC0_1Mhz appears. Click OK to add the symbol to the schematic.
- 6. Drag the mouse with the ADC0_1MHz symbol to a location on the diagram and then leftclick to drop it in place.
- 7. Right-click on the ADC0_1MHz symbol and select Generate Pins for Symbol Ports.
- 8. Change the name of the clk_clk pin to clk_50MHz.
- 9. Change the name of the reset_reset_n to SW1. The SW1 switch on the evaluation kit is connected to the FPGA DEV_CLRN pin. The circuit for SW1 is logic 1 on startup and logic0 when pressed.

- 10. Save the schematic as ADC0_Example.bdf.
- 11. In the Task pane on the left, double-click on Fitter (Place & Route) to start the task. The analysis will take some time, and it should succeed in the end. This step helps to diagnose any errors and finds the Node Names for the pin assignments in the next step.

.

Rev 1.4

12. Once the process completes, the pin assignments need to be set. From the menu, select

Assignments->Pin Planner or click on the icon from the toolbar. The analysis that was just run populated the Node Name list at the bottom of the Pin Planner dialog.

Ē	Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Re
	in altera_reserved_tck	Input				PIN_18	2.5 V (default)	
	in altera_reserved_tdi	Input				PIN_19	2.5 V (default)	
	altera_reserved_tdo	Output				PIN_20	2.5 V (default)	
	in altera_reserved_tms	Input				PIN_16	2.5 V (default)	
	in_ clk_50MHz	Input				PIN_28	2.5 V (default)	
	in_ SW1	Input				PIN_29	2.5 V (default)	
ŝ	< <new node="">></new>							

 Using the board schematic, locate the pins for the SW1 and the 50MHz clock. Set the Location values for both node names. For the MAX 10 – 10M08 Evaluation Board, these values are as follows:

Node Name	Location
SW1	PIN_121
Clk_50MHz:	PIN_27
altera_reserved_tck	PIN_18
altera_reserved_tdi	PIN_19
altera_reserved_tdo	PIN_20
altera_reserved_tms	PIN_16

14. Set the I/O Standard to 3.3V-LVTTL for both pins. You can see from the schematic that the I/O are all tied to 3.3V.

×	Named: *	Edit: 🗙 ✔						
P	Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reser
Г	in altera_reserved_tck	Input	PIN_18	1B	B1_N0	PIN_18	2.5 V (default)	
	in altera_reserved_tdi	Input	PIN_19	1B	B1_N0	PIN_19	2.5 V (default)	
	altera_reserved_tdo	Output	PIN_20	1B	B1_N0	PIN_20	2.5 V (default)	
	in altera_reserved_tms	Input	PIN_16	1B	B1_N0	PIN_16	2.5 V (default)	
	in clk_50MHz	Input	PIN_27	2	B2_N0	PIN_28	3.3-V LVTTL	
	i≞_ SW1	Input	PIN_121	8	B8_N0	PIN_29	3.3-V LVTTL	
5	< <new node="">></new>							
5								

The ADC channel pins don't need to be assigned, since the ADC IP Block takes care of this already.

15. Close the Pin Planner when finished. The diagram gets updated with the pin numbers.

symbol in the toolbar. Make sure

		· · · · · · · · · · · ·
	ADC0_1MHz	• • • • • • • • • • • • • •
	clk	· · · · · · · · · · · · · · · · · · ·
cik_50MHz	clk_clk	· · · · · · · · · · · · · · · · · · ·
	reset reset n	••••••••••
PIN_121	inst ADC0_1MHz	
	L	· · · · · · · · · · · · · · · · · · ·

16. Save the project.

Note: A best practice at this point would be to make a backup of the project folder. Quartus can crash unexpectedly, since it appears to be written in Java.

17. Finally, compile the design. In the Task pane, right-click on Compile and Design and select

Start from the context menu, or you can click on the the project compiles successfully.

Flow Summary	
< <filter>></filter>	
Flow Status	Successful - Thu Jun 30 11:11:41 2022
Quartus Prime Version	21.1.0 Build 842 10/21/2021 SJ Lite Edition
Revision Name	ADC0_Example
Top-level Entity Name	ADC0_Example
Family	MAX 10
Device	10M08SAE144C8GES
Timing Models	Preliminary
Total logic elements	4,871 / 8,064 (60 %)
Total registers	3271
Total pins	2 / 101 (2 %)
Total virtual pins	0
Total memory bits	271,968 / 387,072 (70 %)
Embedded Multiplier 9-bit elements	0 / 48 (0 %)
Total PLLs	1 / 1 (100 %)
UFM blocks	0/1(0%)
ADC blocks	1 / 1 (100 %)

With the design compiled, we can now test it on the board.

1. Connect the board and the programming cable together per the cable instructions.

Note: The MAX 10 – 10M08 Evaluation Kit doesn't come with a programming cable or built-in JTAG USB Blaster II. You will have to use either the USB Blaster II or EthernetBlaster II external cables. The EthernetBlaster II was used. DHCP setup was not working, so a direct Ethernet cable connection was made between a PC and the EthernetBlaster II. Set the static IP for the PC network card to 198.162.0.1. Access the EthernetBlaster II via a browser and then change the IP to a static IP that matches the network. The new IP address was used as the Server name. Your experience might be different.

- 2. Connect a signal generator to the board as follows:
 - Signal out lead to J4-1 (Arduino connector Annalog_IN0).
 - Signal ground to J2-6 (Arduino connector GND).
- 3. Set the function generator to 1Khz 2VPP with a DC offset enabled and set for 1V positive.
- 4. Power on the board and the programming cable box.
- 5. In Quartus Prime, from the Task pane, right-click on Program Device (Open Programmer)

and select Open from the context menu or click on the icon on the toolbar.

- 6. When the Programmer dialog appears, click on the "Hardware Setup" button.
- 7. Click the Add hardware button, select the Hardware type, fill in any remaining information, and click OK.

rdware Settings	JTAG Set	ttings		
lect a programmin	g hardware	setup to use whe	en programming devi	ces. This programming
rdware setup appli	es only to t	he current progra	mmer window.	
rrently selected ha	rdware:	No Hardware		
rduara fraguancia				
👋 Add Hardwar	e		×	
Hardware type:	Ethernet	Blaster	-	Add Hardware
Port:			Ŧ	Remove Hardwar
Baud rate:				
Server name:			•	
Server port:	1309			
Server password	:			

8. The tool allows you to connect to a number of programming cables. We need to select the one for our board. In the "Currently selected hardware", click the drop-down, select the hardware cable for the board, and click Close when finished

	etungs		
elect a programming hardwa ardware setup applies only to	re setup to use when p the current programm	rogramming devic er window.	es. This programming
urrently selected hardware:	EthernetBlasterII on 1	92.168.1.198 [Eth	ernetBlasterII] 🔹
lardware frequency:			Hz
vailable hardware items			
Hardware	Server	Port	Add Hardware
EthernetBlasterII	192.168.1	EthernetBl	Remove Hardware

9. An ADC0_Example.sof file gets created during the Compile Design flow. The file is automatically filled in. There is only one FPGA on the board and in the JTAG chain, so the file already has the Program/Configure checkbox checked. Click the Start button to program the board. The process takes a few seconds and shows that the task completed successfully.

Nrogrammer - E:/	/FPGA/Intel Max 10 FPGA Evaluation Kit/AD(C_Example/ADC0_Exa	ample - ADC0_Ex	ample - [ADC0_	Example.cdf]	-		×
<u>F</u> ile <u>E</u> dit <u>V</u> iew	P <u>r</u> ocessing <u>T</u> ools <u>W</u> indow <u>H</u> elp				Sea	rch Intel F	PGA	9
Hardware Setup.	I on 192.168.1.198 [EthernetBlasterII]	Mode: JTAG		▼ Pro _ĝ	gress:	100% (Si	uccessful)	
▶ [™] Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Exami
Auto Detect Auto Detect Add File	output_files/ADC0_Example.sof	10M08SAE144	0032C42D	0032C42D	V			
Change File	TDI 10M08SAE144							

1.2.5 Test the Design with the ADC Toolkit

The board now has the system loaded in SRAM. The ADC Toolkit can view the output from the ADC.

- 1. Open Platform Builder
- 2. As Platform Builder launches, the pp[en file dialog opens asking to open the ADC0_1MHz.qsys file. Open the ADC0_1MHz.qsys file and the design will load.
- 3. From the menu, select Tools->System Console.

System Console - Toolkits				_		×			
File Tools Help									
System Explorer d'	Toolkits 🗖 🗙								
/	ADC Toolkit (Beta)								
	The ADC Tookit allows for the evaluation of ADC signal path performance.								
⊞ designs									
design_instances	adc0_1mhz:inst/adc0_1mhz_adc0:adc0/adc0_1mhz_adc0_adc_monitor_internal:adc_monitor_internal/altera_trace_adc_monitor_core:core								
EthernetBlasterII on 192.168.1139 [EthernetBlasterII]									
	10M085(A), E5) 110M085(C), 0 1								
Bus Analyzer (Beta)						_			
	The Bus Analyzer provides real-time performance analysis of bus traffic in the system.								
	Launon								
	Load Design		Defrech	Connecti	000				
	Code Cray Inn					ona			
Messages	2	2	Tcl Console			ď			
Finished initialization		יוך	* To shift arbitrary instruction register and data register valu	es to		^			
Could not register IService packet			instantiated system level debug (SLD) nodes						
A service named 'packet' is already registered.			In addition, the directory <quartusii dir="">/sopc builder/system cons</quartusii>	le/scrit	ts				
Hinshed alsovering JLAG connections Auto linking 10M08SA(JES) 10M08S(CIL)@1#EtherpetRiasterTL#192, 168, 1, 198, to ADCD, Evample onf			contains Tcl files that provide miscellaneous utilities and examples of how to						
Finished discovering USB connections			access the functionality provided. You can include those macros in	your					
Executing startup script C: \intelfpga_lite \21.1\quartus\sopc_builder\system_console \scripts\system_console_rc.td			scripts by issuing Tcl source commands.			- 11			
A The script doesn't exist: C:\Users\SEAN_\system_console\system_console_rc.tcl. You can customize System Console by									
			8			~			

- 4. The console will read the JTAG and enable the ADC Toolkit. Click the Launch button to launch the ADC Toolkit.
- 5. A new tab appears. Under Frequency Selection, click Calculate.

Toolkits ADC Toolkit (Beta) 0 🗖 🗙							
ADC: /devices/10M08SA(. ES) 10M08S(C L)@1#EthernetBlasterII#192.168.1.198/(link)/JTAG/alt_sld_fab_sldfabric.							
Frequency Selection Scope Signal C	Quality Linearity						
Choose Desired Source Signal F	Frequency	Nearest Required Sine Wave Frequency					
ADC Channel:	1 ~	Signal Quality Test					
Sample Size (bits): Sample Frequency (Hz):	4096 500000.00	Use Frequency (Hz): 976.562500					
Desired Frequency (Hz):	1000	Linearity Test					
	Calculate	Use Frequency (Hz): 976.800919					

- 6. Click on the Scope tab.
- 7. ADC_Channel 1 should already be selected. The Scope tab looks like the screen of an Oscilloscope. Click the Run button, and you should see the sine wave appear.

- 8. Click on the Raw Data tab to see the actual values coming out of the ADC.
- 9. Click on Stop to stop gathering data.
- 10. Click on the Signal Quality tab and then click the Run button. The command only runs for a few seconds and stops.

11. Click on the Raw Data tab to view the actual values.

The Linearity tab has several scope views: Histogram, DNL, INL, and Raw Data.

- 12. Go back to Scope, and change the ADC_Channel to 7.
- 13. Click the Run button and adjust the 10KΩ trimmer pot in either direction to watch the voltage level change.

Note: TSD was left out of the original design, since there appears to be an issue enabling the TSD with the other two channels. This issue was not indicated in any of the documentation that we found. The old training examples stayed away from enabling the TSD. If you want to view the TSD, you can edit ADC0 in the Platform build. Deselect CH1 and CH7, and then enable TSD. Save and regenerate the system file, and click Finish to close Platform Builder. In Quartus, recompile the design and reprogram the board with the .sof file. Use the Raw Data in the ADC tool kit Scope tab to see the raw output files. Compare the HEX values to the table found in the Intel® MAX® 10 Analog to Digital Converter User Guide.

1.3 Summary: All the Little Steps

Platform Builder and the IP Blocks make it easy to create an FPGA design. The not-so-easy part was all of the little steps that are different from the older training material. Quartus even crashed in one iteration, and naming everything ADC in the first test crashed the compiler with name conflicts. Once the little issues and the TSD issue were resolved, designing and testing flows was very simple.

1.4 References

The following references were used for this article:

- Intel® MAX® 10 Analog to Digital Converter User Guide -<u>https://www.intel.com/content/www/us/en/docs/programmable/683596/20-1/analog-to-digital-converter-overview.html</u>
- Introduction to Analog to Digital Conversion in Intel® MAX® 10 Devices Parts 1 and 2 -Intel FPGA training site <u>Intel® FPGA Technical Training</u>
- Using the ADC Toolkit in Intel® MAX® 10 Devices Intel FPGA training site Intel® FPGA
 <u>Technical Training</u>
- How to Create ADC Design in MAX 10 Device Using Qsys Tool - <u>https://cdrdv2.intel.com/v1/dl/getContent/649255?explicitVersion=true</u> / <u>https://www.youtube.com/watch?v=0oO1RFa-4Xk</u>
- Intel® MAX® 10-10M08 Evaluation Kit schematic file. Altera_10M08S_E144_eval_schematic_REV_1_0.pdf.